CountDownLatch用于倒计时,每个线程对计数器减1,当减到0以后,才能执行继续往下执行,否则阻塞。比如,统计一个Excel文件内的数据,有多个sheet,只有每个sheet都统计完成,最后才能对整个Excel文件进行统计;又比如,公司部门团建,需要先在公司集合,一共10个人,只有10个人都集合后,才能坐大巴去目的地,只要有一个人没到达,大巴车就得一直等着。
public class CountDownLatchDemo {
public static void main(String[] args) {
CountDownLatch countDownLatch = new CountDownLatch(3);
new Thread(()->{
countDownLatch.countDown();
System.out.println("thread1,当前countDownLatch值为:" + countDownLatch.getCount());
},"thread1").start();
new Thread(()->{
countDownLatch.countDown();
System.out.println("thread2,当前countDownLatch值为:" + countDownLatch.getCount());
},"thread2").start();
new Thread(()->{
countDownLatch.countDown();
System.out.println("thread3,当前countDownLatch值为:" + countDownLatch.getCount());
},"thread3").start();
try {
countDownLatch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("当前countDownLatch值为:" + countDownLatch.getCount());
}
}
CountDownLatch类图
首先new CountDownLatch(3)点进去
public CountDownLatch(int count) {
if (count < 0) throw new IllegalArgumentException("count < 0");
this.sync = new Sync(count);
}
//继承了AQS类,state是AQS类的锁状态,即线程重入次数
Sync(int count) {
setState(count);
}
countDown方法
public void countDown() {
//看方法名就知道,是共享锁
sync.releaseShared(1);
}
//AQS类的方法
public final boolean releaseShared(int arg) {
//释放共享锁,state减1,当state减到0后,满足if条件
if (tryReleaseShared(arg)) {
//释放共享锁
doReleaseShared();
return true;
}
//如果state已经等于0,或者state减1后不等于0,返回false
return false;
}
protected boolean tryReleaseShared(int releases) {
// Decrement count; signal when transition to zero
for (;;) {
//获取当前state值
int c = getState();
//如果state等于0,表示锁没有被占用,返回false
if (c == 0)
return false;
//否则将state-1
int nextc = c-1;
//CAS修改state的值,将state值减1,如果CAS失败,说明已经别的线程修改了state值,则再次循环
if (compareAndSetState(c, nextc))
//如果state减1后的值是0,返回true,否则返回false
return nextc == 0;
}
}
//AQS类方法
private void doReleaseShared() {
/*
* Ensure that a release propagates, even if there are other
* in-progress acquires/releases. This proceeds in the usual
* way of trying to unparkSuccessor of head if it needs
* signal. But if it does not, status is set to PROPAGATE to
* ensure that upon release, propagation continues.
* Additionally, we must loop in case a new node is added
* while we are doing this. Also, unlike other uses of
* unparkSuccessor, we need to know if CAS to reset status
* fails, if so rechecking.
*/
for (;;) {
//获取头节点
Node h = head;
//如果同步队列有至少2个节点
if (h != null && h != tail) {
//头节点的waitStatus
int ws = h.waitStatus;
//如果头节点的waitStatus等于-1
if (ws == Node.SIGNAL) {
//CAS将头节点的waitStatus修改为0,如果失败,不执行后面代码,继续for循环,直到修改成功,然后唤醒头节点的后继节点
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue; // loop to recheck cases
unparkSuccessor(h);
}
//如果头节点的waitStatus等于0并且CAS将waitStatus的值修改为-3失败,则不再执行下面的代码,继续for循环,直到修改成功
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
//第一次for循环唤醒同步队列头节点的后继节点,后继节点获取到锁后,这里if返回false,等第二次for循环,就返回true了
if (h == head) // loop if head changed
break;
}
}
//AQS类的方法
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
//获取头节点的waitStatus
int ws = node.waitStatus;
//如果头节点的waitStatus小于0
if (ws < 0)
//设置头节点的waitStatus为0
compareAndSetWaitStatus(node, ws, 0);
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
//获取头节点的下一个节点
Node s = node.next;
//如果头节点的后继节点为null或取消等待了
if (s == null || s.waitStatus > 0) {
s = null;
//倒序遍历,将同步队列中已经取消等待的节点移除,找到离头节点最近的第一个waitStatus<=0的节点
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
//如果节点不等于null,唤醒节点线程
if (s != null)
LockSupport.unpark(s.thread);
}
AQS同步队列
线程3唤醒主线程
主线程获取锁
线程3将state减到0后的AQS同步队列
线程3唤醒主线程后的AQS同步队列
await方法
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
//AQS类方法
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
//如果线程已经被中断,抛出中断异常
if (Thread.interrupted())
throw new InterruptedException();
//如果state不等于0,需要阻塞当前线程
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}
protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1;
}
//AQS类方法
//当state不等于0时,才进入该方法
private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
//将当前线程封装成Node,以共享模式放入同步队列末尾(之前的AQS源码文章有分析过,这里不再赘述)
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
//获取当前节点前置节点
final Node p = node.predecessor();
//如果前置节点是头节点
if (p == head) {
//(getState() == 0) ? 1 : -1;
int r = tryAcquireShared(arg);
//如果state不等于0,则继续for循环,否则,进入if代码块
if (r >= 0) {
//设置当前节点为头节点并唤醒头节点后继节点
setHeadAndPropagate(node, r);
//移除原头节点
p.next = null; // help GC
failed = false;
return;
}
}
//如果当前节点的前置节点不是头结点,执行if
//挂起当前线程
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
//AQS类的方法
//state等于0才进入该方法
private void setHeadAndPropagate(Node node, int propagate) {
//获取同步队列头节点
Node h = head; // Record old head for check below
//设置当前节点为head,且当前节点的thread和prev都置为null
setHead(node);
/*
* Try to signal next queued node if:
* Propagation was indicated by caller,
* or was recorded (as h.waitStatus either before
* or after setHead) by a previous operation
* (note: this uses sign-check of waitStatus because
* PROPAGATE status may transition to SIGNAL.)
* and
* The next node is waiting in shared mode,
* or we don't know, because it appears null
*
* The conservatism in both of these checks may cause
* unnecessary wake-ups, but only when there are multiple
* racing acquires/releases, so most need signals now or soon
* anyway.
*/
//这里propagate == 1
if (propagate > 0 || h == null || h.waitStatus < 0 ||
(h = head) == null || h.waitStatus < 0) {
//获取当前节点的后继节点
Node s = node.next;
//后继节点为空或者为shared
if (s == null || s.isShared())
//释放共享锁,唤醒头节点后面的线程
doReleaseShared();
}
}
总结
新建一个CountDownLatch,构造器传入初始化state值,调用一次countDown方法,state减1,在调用await方法时,如果state不等于0,则当前线程阻塞,只有state等于0时,当前线程才能继续执行。