LeNet-1,LeNet-4,LeNet-5 Code

1, LeNet-1

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

batch_size = 256
num_classes = 10
epochs = 10

img_rows, img_cols = 28, 28
input_shape = (img_rows, img_cols, 1)

(x_train, y_train), (x_test, y_test) = mnist.load_data()

# 处理 x
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')

x_train /= 255
x_test /= 255

# 处理 y
y_train = keras.utils.to_categorical(y_train)
y_test = keras.utils.to_categorical(y_test)


model = Sequential()

model.add(Conv2D(4, (5, 5), activation = 'relu', padding = 'same', input_shape = input_shape))
model.add(MaxPooling2D(pool_size = (2, 2)))

model.add(Conv2D(12, (5, 5), activation = 'relu', padding = 'same'))
model.add(MaxPooling2D(pool_size = (2, 2)))

model.add(Flatten())
model.add(Dense(10, activation = 'softmax'))

model.compile(loss = 'categorical_crossentropy', optimizer = 'adadelta', metrics = ['accuracy'])

model.fit(x_train, y_train, validation_data = (x_test, y_test), batch_size = batch_size, epochs = epochs, verbose = 1)

score = model.evaluate(x_test, y_test, verbose = 2)
print('Test loss: ', score[0])
print('Test accuracy: ', score[1])

Test loss: 0.0458575173373
Test accuracy: 0.985

2,LeNet-4

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

batch_size = 256
num_classes = 10
epochs = 10

img_rows, img_cols = 28, 28
input_shape = (img_rows, img_cols, 1)

(x_train, y_train), (x_test, y_test) = mnist.load_data()

# 处理 x
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')

x_train /= 255
x_test /= 255

# 处理 y
y_train = keras.utils.to_categorical(y_train)
y_test = keras.utils.to_categorical(y_test)


model = Sequential()

model.add(Conv2D(6, (5, 5), activation = 'relu', padding = 'same', input_shape = input_shape))
model.add(MaxPooling2D(pool_size = (2, 2)))

model.add(Conv2D(16, (5, 5), activation = 'relu', padding = 'same'))
model.add(MaxPooling2D(pool_size = (2, 2)))

model.add(Flatten())
model.add(Dense(84, activation = 'relu'))
model.add(Dense(10, activation = 'softmax'))

model.compile(loss = 'categorical_crossentropy', optimizer = 'adadelta', metrics = ['accuracy'])

model.fit(x_train, y_train, validation_data = (x_test, y_test), batch_size = batch_size, epochs = epochs, verbose = 1)

score = model.evaluate(x_test, y_test, verbose = 0)
print('Test loss: ', score[0])
print('Test accuracy: ', score[1])

Test loss: 0.0271811319855
Test accuracy: 0.9898

3,LeNet-5



import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

batch_size = 256
num_classes = 10
epochs = 10

img_rows, img_cols = 28, 28
input_shape = (img_rows, img_cols, 1)

(x_train, y_train), (x_test, y_test) = mnist.load_data()

# 处理 x
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')

x_train /= 255
x_test /= 255

# 处理 y
y_train = keras.utils.to_categorical(y_train)
y_test = keras.utils.to_categorical(y_test)


model = Sequential()

model.add(Conv2D(6, (5, 5), activation = 'relu', padding = 'same', input_shape = input_shape))
model.add(MaxPooling2D(pool_size = (2, 2)))

model.add(Conv2D(16, (5, 5), activation = 'relu', padding = 'same'))
model.add(MaxPooling2D(pool_size = (2, 2)))

model.add(Flatten())
model.add(Dense(120, activation = 'relu'))
model.add(Dense(84, activation = 'relu'))
model.add(Dense(10, activation = 'softmax'))

model.compile(loss = 'categorical_crossentropy', optimizer = 'adadelta', metrics = ['accuracy'])

model.fit(x_train, y_train, validation_data = (x_test, y_test), batch_size = batch_size, epochs = epochs, verbose = 1)

score = model.evaluate(x_test, y_test, verbose = 0)
print('Test loss: ', score[0])
print('Test accuracy: ', score[1])

Test loss: 0.0322017334626
Test accuracy: 0.9901

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 车,这个物件自从发明以来深受大众喜爱。她真是个好东西,给我们的世界带来了无限的惊喜和便捷。但就是这么一个人人都在用...
    敏敏的日记阅读 307评论 0 1
  • 不知道从什么时候起,你习惯了每天朝九晚五的生活,早上带着一脸疲惫,头脑空白拿起牙刷,漠然的重复着刷牙的动作,看了看...
    赖文丰阅读 411评论 0 0
  • 我数到三,你便会醒来,会记起所有的一切。 布鲁斯-韦恩其实一直是一个很自豪的人,他拥有着多数人都羡慕的……美满的家...
    DreamMachi_426c阅读 468评论 0 0