Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
the contiguous subarray [4,-1,2,1] has the largest sum = 6.
More practice:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
分享一段我认为简单易懂的代码
class Solution {
public:
int maxSubArray(vector& nums) {
int sum = 0;
int result = nums[0];
for(int i = 0; i < nums.size(); i++) {
sum += nums[i];
result = max(sum, result);
sum = max(sum, 0);
}
return result;
}
};
认为这段代码很棒,一开始无法确定subarray的起始点在哪里,代码里可以了解到,我们首先初始化结果为 nums[0],
之后如果有max + nums[i] > max 的,那么该数一定大于0,那么sum = max(sum,0)中sum就可以持续对下一个数计算总和
如果之后 0< max + nums[i] < max 的,那么sum可以继续计算下一个,防止类似 4, -2,99,1 后面有正整数出现
如果之后 max + nums[i] < max 且 max + nums[i] < 0 的,sum清零,result在这一组合中已经出结果,sum又要从一个全新的位置开始算和
随后,result再开始像之前那样的变化