在机器学习问题中,很多时候无法确定一个概率分布的具体密度函数,因而在对这种分布进行后续操作(例如,贝叶斯学派求后验概率时)时难度很大,无法进行。为了简化问题经常需要对这种复杂分布进行近似,从而方便计算或操作。目前常用的近似算法主要有三种:拉普拉斯近似、变分近似、Gibbs采样
Gibbs采样
©著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
推荐阅读更多精彩内容
- 1. 最小二乘法(Least squares) 最小二乘法是一种数学优化技术,它通过最小化误差的平方来寻找数据的最...