用CNN识别CT图像检测肺癌

用CNN识别CT图像检测肺癌


原文:2nd place solution for the 2017 national datascience bowl

翻译参考:知乎用户王小新 Kaggle百万美元大赛优胜者:用CNN识别CT图像检测肺癌


概要

本文为2017年由Kaggle举办的数据科学竞赛的第二名获奖者Julian de Wit的部分解决方案。Julian de Wit和Daniel Hammack通过构建3D卷积神经网络创建肺结节探测器,预测患者患癌的可能性。Wit的开发环境为Windows版的Tensorflow和Keras库。

Kaggle在该比赛中提示参赛选手可参考之前的LUNA16竞赛。该竞赛采用的数据集是由公开数据集LIDC-IDRI转化而来的,医生为800多个病人的CT图像标记了1000多个肺结节。因此,可以从整张CT图像中的标记周围裁剪出小型3D图像,将这些小型3D图像与结节标记直接对应,从而利用神经网络学习这些特征,训练出一个神经网络来检测肺结节,并评估结节的恶性程度,预测患者患癌的可能性。其中,预测时神经网络通过滑动窗口的方式来遍历整张CT图像,分别判断每个滑动窗口所包含的区域是否含有恶性信息的可能性。

数据预处理和创建训练集

数据预处理

在预处理过程中,首先对CT图像进行缩放,保证图像中的每个像素点只表示1mm^3的体积;然后将CT图像的像素强度转换为HU值,并最大化HU值后进行归一化处理;最后,确保所有CT图像都具有相同的方向。

训练集构建

计划构建U-net网络分割肺部区域。根据观察CT图像,可利用肺组织的边缘构建相应的框架找到肺结节。

上图为带有标记的不同数据集。

在分割掩膜边缘进行采样标注,从而分割得到肺部组织。

在第一轮训练中,对LUNA16数据集上进行结节预测,得到了所有假阳性结节,并将其并入LUNA16 V2数据集中。随后,手动标记NDSB数据集中癌症样本的阳性结节和非癌症样本的假阳性结节,并训练第二各模型,其效果很糟糕。但将两个模型相结合,其效果相比于单个模型较好,因此保留第二个模型。

建立一个结节观测器,用于调试所有的标记。LIDC数据集的说明文档表明医生被要求忽略大于3cm的结节,但担心这些被忽略的结节会影响分类器的准确度,从而删除了与这些结节相重叠的部分。

上图为CT图像中的标记。左上为LUNA16 V2的数据;右上为非肺组织的边缘;左下为假阳性的区域;右下为被移除的无标注区域。

3D卷积神经网络的训练方法和网络结构

数据集正反两类样本量比为5000:500000,且正面例子的大小和形状有很大差异。因此在CT图像的滑动窗口中,建立小型3D卷积神经网络。

第一个目标为训练一个可作为基础的结节检测器。首先对正例进行上采样(upsample),将正反两类的样本比上调至1:20;然后进行一些图像增强操作以提高模型的泛化能力。

设计好分类器后,再训练一个用于预测恶化程度的回归模型,将肿瘤恶化程度划分为1(很可能不是恶性)~5(很可能是恶性),且为了强调肿瘤的恶化程度,对之前的划分平方运算后将范围扩大到0~25。计划使用同一个网络,以多任务学习的方法,同时进行分类结点和估计恶化程度这两个任务。

采用基于C3D神经网络(类VGG网络)得到最终的分类评估网络。首先将输入大小设置为32×32×32mm;对Z轴进行average pooling操作;最后,在网络的终端引入Botteneck features。

注:此处不是直接预测恶性肿瘤,而是输出结节的恶化程度。

上图为3D卷积神经网络结构示意图。

奇怪组织(strange tissue)检测器

当肺结节癌变时,其可能变为一些肺部肿块或更为复杂的组织。在CT图像中,若存在大量的“奇怪组织”,则表明癌症的可能性较高。然而,在目前的结节检测器程序中,对存在大量“奇怪组织”的CT图像,其无法检测出任意结节。因此,该问题将造成较高的假阳性率。

对于该问题,在LUNA16训练集上采用U-net网络构建检测器,但其效果提升微小。

源码中,作者使用部分LUNA16数据集和部分NDSB数据集,以及53个额外数据集(疑似来自本文原文中提到的吸烟者的肺部CT图像),基于U-net模型构建肿块检查器。

癌症预测

在之前的处理过程中,存在一个严重问题:错过了一些较大的明显的结节。因此,对CT图像进行两次下采样(downsample),并让网络在1,1.5和2这三个尺度上预测。

上图中左图表明没有很好地检测到大结节,图像缩放为1倍大小;右图表明检测效果较好,图像放大为2倍大小。图中矩形框表示检测到的恶性肿瘤。

添加额外的特征,构建梯度增强分类器(共使用7个特征)来预测一年内患者是否患癌。

主要由两个模型组成:

  • 第一个模型基于所有的LUNA16数据集构建而成;

  • 第二个模型通过选择NDSB3数据集中疑难病例和假阳性病例主动学习构建而成。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,324评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,356评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,328评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,147评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,160评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,115评论 1 296
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,025评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,867评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,307评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,528评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,688评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,409评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,001评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,657评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,811评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,685评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,573评论 2 353

推荐阅读更多精彩内容