【机器人学】微分变换与雅可比矩阵

假定有三个坐标系W、A、B,其中W为基坐标系。

变换矩阵的左乘和右乘

当坐标系A变换成坐标系B时,可左乘一个矩阵,也可右乘一个矩阵
{^W}T{_B} = {^W}T{_U} {^W}T{_A}
{^W}T{_B} = {^W}T{_A} {^A}T{_B}

对于左乘的情况,变换矩阵为
{^W}T{_U} = Trans(\Delta{_x},\Delta{_y},\Delta{_z})Rot(f,\Delta{_\theta})
表示的是一个基于基坐标系的平移和绕轴旋转的变换,式中的变量均以基坐标系为参考坐标系。

对于右乘的情况,变换矩阵为
{^A}T{_B} = Trans({^T}\Delta{_x},{^T}\Delta{_y},{^T}\Delta{_z})Rot({^T}f,{^T}\Delta{_\theta})
表示的是一个基于A坐标系(联体坐标系)的平移和绕轴旋转的变换,变换矩阵刚好为B坐标系在A坐标系下的表示,式中的变量均以A坐标系为参考坐标系。

微分变换

当变换前后的两个坐标系非常接近时,变换矩阵简化为

\begin{aligned} {^W}T{_U} &= Trans(d{_x},d{_y},d{_z})Rot(f,d{_\theta}) \\ &= \begin{bmatrix} 0 & -f{_z}f{_\theta} & f{_y}f{_\theta} & d{_x} \\ f{_z}f{_\theta} & 0 & -f{_x}f{_\theta} & d{_y} \\ -f{_y}f{_\theta} & f{_x}f{_\theta} & 0 & d{_z} \end{bmatrix} \\ &= \begin{bmatrix} 0 & -\delta{_z} & \delta{_y} & d{_x} \\ \delta{_z} & 0 & -\delta{_x} & d{_y} \\ -\delta{_y} & \delta{_x} & 0 & d{_z} \end{bmatrix} \end{aligned}

\begin{aligned} {^A}T{_B} &= Trans({^T}d{_x},{^T}d{_y},{^T}d{_z})Rot({^T}f,{^T}d{_\theta}) \\ &= \begin{bmatrix} 0 & -{^T}f{_z}{^T}f{_\theta} & {^T}f{_y}{^T}f{_\theta} & {^T}d{_x} \\ {^T}f{_z}{^T}f{_\theta} & 0 & -{^T}f{_x}{^T}f{_\theta} & {^T}d{_y} \\ -{^T}f{_y}{^T}f{_\theta} & {^T}f{_x}{^T}f{_\theta} & 0 & {^T}d{_z} \end{bmatrix} \\ &= \begin{bmatrix} 0 & -{^T}\delta{_z} & {^T}\delta{_y} & {^T}d{_x} \\ {^T}\delta{_z} & 0 & -{^T}\delta{_x} & {^T}d{_y} \\ -{^T}\delta{_y} & {^T}\delta{_x} & 0 & {^T}d{_z} \end{bmatrix} \end{aligned}

两种坐标系下微分变换平移和旋转的关系

由于左乘和右乘两种变换是等价的,即

{^W}T{_U} {^W}T{_A} = {^W}T{_A} {^A}T{_B}

其中

{^W}T{_A} = \begin{bmatrix} n{_x} & o{_x} & a{_x} & p{_x} \\ n{_y} & o{_y} & a{_y} & p{_y} \\ n{_z} & o{_z} & a{_z} & p{_z} \\ 0 & 0 & 0 & 1 \end{bmatrix}

得到基坐标系下和联体坐标系下微分变换之间的关系

\begin{aligned} {^A}T{_B} &= {^W}T{_A}{^{-1}} {^W}T{_U} {^W}T{_A} \\ &= \begin{bmatrix} 0 & -\delta.a & \delta.o & \delta.(p \times n)+d.n \\ \delta.a & 0 & -\delta.n & \delta.(p \times o)+d.o \\ -\delta.o & \delta.n & 0 & \delta.(p \times a)+d.a \end{bmatrix} \\ &= \begin{bmatrix} 0 & -{^T}\delta{_z} & {^T}\delta{_y} & {^T}d{_x} \\ {^T}\delta{_z} & 0 & -{^T}\delta{_x} & {^T}d{_y} \\ -{^T}\delta{_y} & {^T}\delta{_x} & 0 & {^T}d{_z} \end{bmatrix} \end{aligned}

由此可得到基坐标系下和联体坐标系下平移旋转微分量之间的关系

\begin{bmatrix} {^T}d{_x} \\ {^T}d{_y} \\ {^T}d{_z} \\ {^T}\delta{_x} \\ {^T}\delta{_y} \\ {^T}\delta{_z} \end{bmatrix} = \begin{bmatrix} n{_x} & n{_y} & n{_z} & (p \times n){_x} & (p \times n){_y} & (p \times n){_z} \\ o{_x} & o{_y} & o{_z} & (p \times o){_x} & (p \times o){_y} & (p \times o){_z} \\ a{_x} & a{_y} & a{_z} & (p \times a){_x} & (p \times a){_y} & (p \times a){_z} \\ 0 & 0 & 0 & n{_x} & n{_y} & n{_z} \\ 0 & 0 & 0 & o{_x} & o{_y} & o{_z} \\ 0 & 0 & 0 & a{_x} & a{_y} & a{_z} \end{bmatrix} \begin{bmatrix} d{_x} \\ d{_y} \\ d{_z} \\ \delta{_x} \\ \delta{_y} \\ \delta{_z} \end{bmatrix}

\begin{bmatrix} {^T}d \\ {^T}\delta \end{bmatrix} = \begin{bmatrix} R{^T} & -R{^T}S(p) \\ 0 & R{^T} \end{bmatrix} \begin{bmatrix} d \\ \delta \end{bmatrix}

\begin{bmatrix} d{_x} \\ d{_y} \\ d{_z} \\ \delta{_x} \\ \delta{_y} \\ \delta{_z} \end{bmatrix} = \begin{bmatrix} n{_x} & o{_x} & a{_x} & (p \times n){_x} & (p \times o){_x} & (p \times a){_x} \\ n{_y} & o{_y} & a{_y} & (p \times n){_y} & (p \times o){_y} & (p \times a){_y} \\ n{_z} & o{_z} & a{_z} & (p \times n){_z} & (p \times o){_z} & (p \times a){_z} \\ 0 & 0 & 0 & n{_x} & o{_x} & a{_x} \\ 0 & 0 & 0 & n{_y} & o{_y} & a{_y} \\ 0 & 0 & 0 & n{_z} & o{_z} & a{_z} \end{bmatrix} \begin{bmatrix} {^T}d{_x} \\ {^T}d{_y} \\ {^T}d{_z} \\ {^T}\delta{_x} \\ {^T}\delta{_y} \\ {^T}\delta{_z} \end{bmatrix}

\begin{bmatrix} d \\ \delta \end{bmatrix} = \begin{bmatrix} R & -S{^T}(p)R \\ 0 & R \end{bmatrix} \begin{bmatrix} {^T}d \\ {^T}\delta \end{bmatrix}

R = \begin{bmatrix} n{_x} & o{_x} & a{_x} \\ n{_y} & o{_y} & a{_y} \\ n{_z} & o{_z} & a{_z} \end{bmatrix}, S(p) = \begin{bmatrix} 0 & -p{_z} & p{_y} \\ p{_z} & 0 & -p{_x} \\ -p{_y} & p{_x} & 0 \end{bmatrix}

微分变换的无序性

绕各个轴旋转的变换矩阵分别为

Rot(x, \delta{_x}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -\delta{_x} & 0 \\ 0 & \delta{_x} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ Rot(y, \delta{_y}) = \begin{bmatrix} 1 & 0 & \delta{_y} & 0 \\ 0 & 1 & 0 & 0 \\ -\delta{_y} & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ Rot(z, \delta{_z}) = \begin{bmatrix} 1 & -\delta{_z} & 0 & 0 \\ \delta{_z} & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}

XYZ和ZYX旋转结果分别为

Rot(x, \delta{_x}) Rot(y, \delta{_y}) Rot(z, \delta{_z}) = \begin{bmatrix} 1 & -\delta{_z} & \delta{_y} & 0 \\ \delta{_x}\delta{_y}+\delta{_z} & 1-\delta{_x}\delta{_y}\delta{_z} & -\delta{_x} & 0 \\ -\delta{_y}+\delta{_x}\delta{_z} & \delta{_y}\delta{_z}+\delta{_x} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}

Rot(z, \delta{_z}) Rot(y, \delta{_y}) Rot(x, \delta{_x}) = \begin{bmatrix} 1 & -\delta{_z}+\delta{_x}delta{_y} & \delta{_x}\delta{_z}+\delta{_y} & 0 \\ \delta{_x} & 1+\delta{_x}\delta{_y}\delta{_z} & -\delta{_x}+\delta{_y}\delta{_z} & 0 \\ -\delta{_y} & \delta{_x} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}

在忽略高阶无穷小的前提下,两式结果相同。另外,用同样的方法容易验证微小平移和微小旋转之间与变换顺序无关。在忽略高阶无穷小的前提下(即多个变分相乘的项),微分变换与次序无关,即微分变换具有无序性

雅可比矩阵

雅可比矩阵为笛卡尔空间与关节空间的速度之间的关系

\begin{bmatrix} v \\ \omega \end{bmatrix} = \begin{bmatrix} J_{11} & J_{12} & ... & J_{1n} \\ J_{21} & J_{22} & ... & J_{2n} \\ J_{31} & J_{32} & ... & J_{3n} \\ J_{41} & J_{42} & ... & J_{4n} \\ J_{51} & J_{52} & ... & J_{5n} \\ J_{61} & J_{62} & ... & J_{6n} \\ \end{bmatrix} \begin{bmatrix} q^{\prime}_{1} \\ q^{\prime}_{2} \\ ... \\ q^{\prime}_{n-1} \\ q^{\prime}_{n} \\ \end{bmatrix}

可得到微分运动量之间的关系

dx = \begin{bmatrix} d \\ \delta \end{bmatrix} = J(q)dq

转动关节旋转时,以当前位置的连杆坐标系为参考坐标系,则微分运动的连杆坐标系绕其z轴旋转,该旋转运动在该坐标系下的微分平移和微分旋转矢量为

{^i}d = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, {^i}\delta = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}q{_i}

由此基于当前位置的连杆坐标系关于该关节的雅可比向量为

^{i}J_{i} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}^{T}

乘上基坐标系下和联体坐标系下平移旋转微分量之间关系的矩阵,转换到机器人基坐标系为

J_{i} = \begin{bmatrix} (p_{i} \times a_{i})_{x} & (p_{i} \times a_{i})_{y} & (p_{i} \times a_{i})_{z} & a_{ix} & a_{iy} & a_{iz} \end{bmatrix}^{T}

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容