Spring Boot中有多个@Async异步任务时,记得做好线程池的隔离!

通过上一篇:配置@Async异步任务的线程池的介绍,你应该已经了解到异步任务的执行背后有一个线程池来管理执行任务。为了控制异步任务的并发不影响到应用的正常运作,我们必须要对线程池做好相应的配置,防止资源的过渡使用。除了默认线程池的配置之外,还有一类场景,也是很常见的,那就是多任务情况下的线程池隔离。

什么是线程池的隔离,为什么要隔离

可能有的小伙伴还不太了解什么是线程池的隔离,为什么要隔离?。所以,我们先来看看下面的场景案例:

@RestController
public class HelloController {

    @Autowired
    private AsyncTasks asyncTasks;
        
    @GetMapping("/api-1")
    public String taskOne() {
        CompletableFuture<String> task1 = asyncTasks.doTaskOne("1");
        CompletableFuture<String> task2 = asyncTasks.doTaskOne("2");
        CompletableFuture<String> task3 = asyncTasks.doTaskOne("3");
        
        CompletableFuture.allOf(task1, task2, task3).join();
        return "";
    }
    
    @GetMapping("/api-2")
    public String taskTwo() {
        CompletableFuture<String> task1 = asyncTasks.doTaskTwo("1");
        CompletableFuture<String> task2 = asyncTasks.doTaskTwo("2");
        CompletableFuture<String> task3 = asyncTasks.doTaskTwo("3");
        
        CompletableFuture.allOf(task1, task2, task3).join();
        return "";
    }
    
}

上面的代码中,有两个API接口,这两个接口的具体执行逻辑中都会把执行过程拆分为三个异步任务来实现。

好了,思考一分钟,想一下。如果这样实现,会有什么问题吗?


上面这段代码,在API请求并发不高,同时如果每个任务的处理速度也够快的时候,是没有问题的。但如果并发上来或其中某几个处理过程扯后腿了的时候。这两个提供不相干服务的接口可能会互相影响。比如:假设当前线程池配置的最大线程数有2个,这个时候/api-1接口中task1和task2处理速度很慢,阻塞了;那么此时,当用户调用api-2接口的时候,这个服务也会阻塞!

造成这种现场的原因是:默认情况下,所有用@Async创建的异步任务都是共用的一个线程池,所以当有一些异步任务碰到性能问题的时候,是会直接影响其他异步任务的。

为了解决这个问题,我们就需要对异步任务做一定的线程池隔离,让不同的异步任务互不影响。

不同异步任务配置不同线程池

下面,我们就来实际操作一下!

第一步:初始化多个线程池,比如下面这样:

@EnableAsync
@Configuration
public class TaskPoolConfig {

    @Bean
    public Executor taskExecutor1() {
        ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
        executor.setCorePoolSize(2);
        executor.setMaxPoolSize(2);
        executor.setQueueCapacity(10);
        executor.setKeepAliveSeconds(60);
        executor.setThreadNamePrefix("executor-1-");
        executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
        return executor;
    }

    @Bean
    public Executor taskExecutor2() {
        ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
        executor.setCorePoolSize(2);
        executor.setMaxPoolSize(2);
        executor.setQueueCapacity(10);
        executor.setKeepAliveSeconds(60);
        executor.setThreadNamePrefix("executor-2-");
        executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
        return executor;
    }
}

注意:这里特地用executor.setThreadNamePrefix设置了线程名的前缀,这样可以方便观察后面具体执行的顺序。

第二步:创建异步任务,并指定要使用的线程池名称

@Slf4j
@Component
public class AsyncTasks {

    public static Random random = new Random();

    @Async("taskExecutor1")
    public CompletableFuture<String> doTaskOne(String taskNo) throws Exception {
        log.info("开始任务:{}", taskNo);
        long start = System.currentTimeMillis();
        Thread.sleep(random.nextInt(10000));
        long end = System.currentTimeMillis();
        log.info("完成任务:{},耗时:{} 毫秒", taskNo, end - start);
        return CompletableFuture.completedFuture("任务完成");
    }

    @Async("taskExecutor2")
    public CompletableFuture<String> doTaskTwo(String taskNo) throws Exception {
        log.info("开始任务:{}", taskNo);
        long start = System.currentTimeMillis();
        Thread.sleep(random.nextInt(10000));
        long end = System.currentTimeMillis();
        log.info("完成任务:{},耗时:{} 毫秒", taskNo, end - start);
        return CompletableFuture.completedFuture("任务完成");
    }

}

这里@Async注解中定义的taskExecutor1taskExecutor2就是线程池的名字。由于在第一步中,我们没有具体写两个线程池Bean的名称,所以默认会使用方法名,也就是taskExecutor1taskExecutor2

第三步:写个单元测试来验证下,比如下面这样:

@Slf4j
@SpringBootTest
public class Chapter77ApplicationTests {

    @Autowired
    private AsyncTasks asyncTasks;

    @Test
    public void test() throws Exception {
        long start = System.currentTimeMillis();

        // 线程池1
        CompletableFuture<String> task1 = asyncTasks.doTaskOne("1");
        CompletableFuture<String> task2 = asyncTasks.doTaskOne("2");
        CompletableFuture<String> task3 = asyncTasks.doTaskOne("3");

        // 线程池2
        CompletableFuture<String> task4 = asyncTasks.doTaskTwo("4");
        CompletableFuture<String> task5 = asyncTasks.doTaskTwo("5");
        CompletableFuture<String> task6 = asyncTasks.doTaskTwo("6");

        // 一起执行
        CompletableFuture.allOf(task1, task2, task3, task4, task5, task6).join();

        long end = System.currentTimeMillis();

        log.info("任务全部完成,总耗时:" + (end - start) + "毫秒");
    }

}

在上面的单元测试中,一共启动了6个异步任务,前三个用的是线程池1,后三个用的是线程池2。

先不执行,根据设置的核心线程2和最大线程数2,来分析一下,大概会是怎么样的执行情况?

  1. 线程池1的三个任务,task1和task2会先获得执行线程,然后task3因为没有可分配线程进入缓冲队列
  2. 线程池2的三个任务,task4和task5会先获得执行线程,然后task6因为没有可分配线程进入缓冲队列
  3. 任务task3会在task1或task2完成之后,开始执行
  4. 任务task6会在task4或task5完成之后,开始执行

分析好之后,执行下单元测试,看看是否是这样的:

2021-09-15 23:45:11.369  INFO 61670 --- [   executor-1-1] com.didispace.chapter77.AsyncTasks       : 开始任务:1
2021-09-15 23:45:11.369  INFO 61670 --- [   executor-2-2] com.didispace.chapter77.AsyncTasks       : 开始任务:5
2021-09-15 23:45:11.369  INFO 61670 --- [   executor-2-1] com.didispace.chapter77.AsyncTasks       : 开始任务:4
2021-09-15 23:45:11.369  INFO 61670 --- [   executor-1-2] com.didispace.chapter77.AsyncTasks       : 开始任务:2
2021-09-15 23:45:15.905  INFO 61670 --- [   executor-2-1] com.didispace.chapter77.AsyncTasks       : 完成任务:4,耗时:4532 毫秒
2021-09-15 23:45:15.905  INFO 61670 --- [   executor-2-1] com.didispace.chapter77.AsyncTasks       : 开始任务:6
2021-09-15 23:45:18.263  INFO 61670 --- [   executor-1-2] com.didispace.chapter77.AsyncTasks       : 完成任务:2,耗时:6890 毫秒
2021-09-15 23:45:18.263  INFO 61670 --- [   executor-1-2] com.didispace.chapter77.AsyncTasks       : 开始任务:3
2021-09-15 23:45:18.896  INFO 61670 --- [   executor-2-2] com.didispace.chapter77.AsyncTasks       : 完成任务:5,耗时:7523 毫秒
2021-09-15 23:45:19.842  INFO 61670 --- [   executor-1-2] com.didispace.chapter77.AsyncTasks       : 完成任务:3,耗时:1579 毫秒
2021-09-15 23:45:20.551  INFO 61670 --- [   executor-1-1] com.didispace.chapter77.AsyncTasks       : 完成任务:1,耗时:9178 毫秒
2021-09-15 23:45:24.117  INFO 61670 --- [   executor-2-1] com.didispace.chapter77.AsyncTasks       : 完成任务:6,耗时:8212 毫秒
2021-09-15 23:45:24.117  INFO 61670 --- [           main] c.d.chapter77.Chapter77ApplicationTests  : 任务全部完成,总耗时:12762毫秒

好了,今天的学习就到这里!如果您学习过程中如遇困难?可以加入我们超高质量的Spring技术交流群,参与交流与讨论,更好的学习与进步!更多Spring Boot教程可以点击直达!,欢迎收藏与转发支持!

代码示例

本文的完整工程可以查看下面仓库中2.x目录下的chapter7-7工程:

如果您觉得本文不错,欢迎Star支持,您的关注是我坚持的动力!

欢迎关注我的公众号:程序猿DD,分享外面看不到的干货!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,928评论 6 509
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,748评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,282评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,065评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,101评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,855评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,521评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,414评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,931评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,053评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,191评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,873评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,529评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,074评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,188评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,491评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,173评论 2 357

推荐阅读更多精彩内容