P1880. 石子合并
- 为什么两倍的数组可以模拟环?
- 和House Robber II 的环有何不同?
House Robber II 是首尾不能同时取,所以忽略首和忽略尾做两次线性DP即可
import java.util.Arrays;
import java.util.Scanner;
public class LuoP1880 {
public static void main(String[] args) {
//读数据
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] nums = new int[2*n]; //两倍长度的array模拟环
for (int i = 0; i < n; i++) nums[i] = nums[i+n] = in.nextInt();
in.close();
//前缀和 以及 两个 DP数组
int N = 2 * n;
int[] preSum = new int[2*N+1];
for (int i = 0; i < N; i++) preSum[i+1] = preSum[i] + nums[i];
int[][] dp1 = new int[N][N];
int[][] dp2 = new int[N][N];
for (int[] temp : dp1) Arrays.fill(temp, Integer.MAX_VALUE);
for (int i = 0; i < N; i++) dp1[i][i] = 0;
//区间DP,状态转移
for (int l = 2; l <= n; l++) {
for (int i = 0; i <= N-l; i++) {
int j = i + l - 1;
if (j >= N) continue;
for (int k = i; k < j; k++) {
dp1[i][j] = Math.min(dp1[i][j], dp1[i][k] + dp1[k+1][j] + preSum[j+1] - preSum[i]);
dp2[i][j] = Math.max(dp2[i][j], dp2[i][k] + dp2[k+1][j] + preSum[j+1] - preSum[i]);
}
}
}
int maxRes = Integer.MIN_VALUE;
int minRes = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
maxRes = Math.max(maxRes, dp2[i][i+n-1]);
minRes = Math.min(minRes, dp1[i][i+n-1]);
}
System.out.println(minRes);
System.out.println(maxRes);
}
}
1000. Minimum Cost to Merge Stones
//bottom-up DP
//time complexity: O(n^3/K), space complexity: O(n^2)
//because in the inner-most loop, i can skip a lot of invalid cases
class Solution {
public int mergeStones(int[] stones, int K) {
int n = stones.length;
if ((n-1) % (K-1) != 0) return -1;
//dp[i][j] is the min cost to merge [i, j] to 1 pile
int[] preSum = new int[n+1];
for (int i = 0; i < n; i++) preSum[i+1] = preSum[i] + stones[i];
int[][] dp = new int[n][n];
for (int[] temp : dp) Arrays.fill(temp, Integer.MAX_VALUE);
for (int i = 0; i < n; i++) dp[i][i] = 0;
for (int l = 2; l <= n; l++) {
for (int i = 0; i <= n-l; i++) {
int j = i+l-1;
//分成两部分[i, m], [m+1, j]
//dp[i][j] = min(dp[i][j], dp[i][m] + dp[m+1][j])
//如何可以知道m是一个valid split? [i, m] can form one pile
for (int m = i; m < j; m += K-1) {
dp[i][j] = Math.min(dp[i][j], dp[i][m] + dp[m+1][j]);
}
if ((l-1) % (K-1) == 0) {
dp[i][j] += preSum[j+1] - preSum[i];
}
}
}
return dp[0][n-1];
}
}
//DFS with memorization, top-down dynamic programming
class Solution {
public int mergeStones(int[] stones, int K) {
int n = stones.length;
//n-1个能merge成K-1个pile,so that it kan form K in the last Merge
if ((n-1) % (K-1) != 0) return -1;
int[] preSum = new int[n+1];
//求前缀和, merge的时候cost + the sum of an K-length interval, O(1)
for (int i = 0; i < n; i++) preSum[i+1] = preSum[i] + stones[i];
//if memo[i][j] is Max, this range is not processed before
int[][] memo = new int[n][n];
for (int[] temp : memo) Arrays.fill(temp, Integer.MAX_VALUE);
//[0, n-1] can form a valid pile
return dfs(memo, 0, n-1, K, preSum);
}
private int dfs(int[][] memo, int i, int j, int K, int[] preSum) {
int len = j - i + 1;
if (len < K) {
return 0;
}
if (memo[i][j] != Integer.MAX_VALUE) {
return memo[i][j];
}
int cost = Integer.MAX_VALUE;
for (int m = i; m < j; m += K-1) {
//[i, i] = 1, [i, i+K-1] = 1, [i, i+K-1+K-1] = 2 valid piles
//assume [i, m] forms 2 valid piles, [m+1, j] forms K-2 piles
// | |
// cost < MAX cost should be zero
//Mewrge the 2 piles and K-2 piles after the for loop (after find the minimum cost split)
cost = Math.min(cost, dfs(memo, i, m, K, preSum) + dfs(memo, m+1, j, K, preSum));
}
//合并
//No mather where we split it, the merge cost in this level is the sum(i, j)
if ((len-1) % (K-1) == 0) {
cost += preSum[j+1] - preSum[i];
}
return memo[i][j] = cost;
}
}
312. Burst Balloons
- 有趣的点
dp[i][j] 的表示:burst all balloons in(i, j)i, j not included
spliter 的选取:k 和 i, j 绝对不重叠 k = i+1; k < j; k++
class Solution {
public int maxCoins(int[] preNums) {
int n = preNums.length + 2;
int[] nums = new int[n];
for (int i = 1; i < n-1; i++) {
nums[i] = preNums[i-1];
}
nums[0] = nums[n-1] = 1;
//dp[i][j] is the max cois if I burst all (i, j) ballons
//NOTE: not include i and j, so that i and j can be added
int[][] dp = new int[n][n];
for (int l = 2; l < n; l++) {
//i 和 j是interval的两端,k才是中间的那个
for (int i = 0; i < n-l; i++) {
int j = i + l;
for (int k = i+1; k < j; k++) {
//base case is: i,j,k are adjacent
dp[i][j] = Math.max(dp[i][j], dp[i][k] + dp[k][j] + nums[i] * nums[k] * nums[j]);
}
}
}
return dp[0][n-1];
}
}
class Solution {
public int maxCoins(int[] preNums) {
int n = preNums.length + 2;
int[] nums = new int[n];
for (int i = 1; i < n-1; i++) {
nums[i] = preNums[i-1];
}
nums[0] = nums[n-1] = 1;
int[][] memo = new int[n][n];
return burst(memo, 0, n-1, nums);
}
private int burst(int[][] memo, int i, int j, int[] nums) {
if (memo[i][j] != 0) return memo[i][j];
int coins = 0;
for (int k = i+1; k < j; k++) {
// coins = Math.max(coins, dp[i][k] + dp[k][j] + nums[i] * nums[k] * nums[j]);
coins = Math.max(coins, burst(memo, i, k, nums) + burst(memo, k, j, nums) + nums[i] * nums[k] * nums[j]);
}
return memo[i][j] = coins;
}
}
516. Longest Palindromic Subsequence
//top-down
class Solution {
public int longestPalindromeSubseq(String s) {
int n = s.length();
int[][] memo = new int[n][n];
return lps(memo, 0, n-1, s);
}
private int lps(int[][] memo, int i, int j, String s) {
if (i == j) return 1;
if (i > j) return 0;
if (memo[i][j] != 0) return memo[i][j];
if (s.charAt(i) == s.charAt(j)) {
return memo[i][j] = lps(memo, i+1, j-1, s) + 2;
} else {
return memo[i][j] = Math.max(lps(memo, i+1, j, s), lps(memo, i, j-1, s));
}
}
}
//bottom-up
class Solution {
//dp[i][j] is the longest subsequence in [i, j]
//if s.charAt(i) == s.charAt(j) dp[i][j] = dp[i+1][j-1] + 2
//else dp[i][j] = Math.min(dp[i+1][j], dp[i][j-1])
//for every state transition, we need the information of next row and last column
public int longestPalindromeSubseq(String s) {
int n = s.length();
int[][] dp = new int[n][n];
for (int i = n-1; i >= 0; i--) {
dp[i][i] = 1;
for (int j = i+1; j < n; j++) {
if (s.charAt(i) == s.charAt(j)) {
dp[i][j] = dp[i+1][j-1] + 2;
} else {
dp[i][j] = Math.max(dp[i+1][j], dp[i][j-1]);
}
}
}
return dp[0][n-1];
}
}