MyGAN

import numpy as np 
import torch 
import torch.nn as nn
import torch.nn.functional as F 
import torch.optim as optim
from torch.autograd import Variable
import matplotlib.pyplot as plt 

data_mean = 4
data_standard_deviation = 1.25
g_input_size = 1     # Random noise dimension coming into generator, per output vector
g_hidden_size = 50   # Generator complexity
g_output_size = 1    # size of generated output vector

d_input_size = 100   # Minibatch size - cardinality of distributions
d_hidden_size = 50   # Discriminator complexity
d_output_size = 1    # Single dimension for 'real' vs. 'fake'

minibatch_size = d_input_size # use batch gradient descent

d_lr = 2e-4
g_lr = 2e-4
optim_betas = (0.9, 0.999)
n_epoches = 10000
print_interval = 1400

class Generator(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(Generator, self).__init__()
        self.map1 = nn.Linear(input_size, hidden_size)
        self.map2 = nn.Linear(hidden_size, hidden_size)
        self.map3 = nn.Linear(hidden_size, output_size)
    def forward(self, x):
        x = F.relu(self.map1(x))
        x = F.sigmoid(self.map2(x))
        x = self.map3(x)
        return x

class Discriminator(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(Discriminator, self).__init__()
        self.map1 = nn.Linear(input_size, hidden_size)
        self.map2 = nn.Linear(hidden_size, hidden_size)
        self.map3 = nn.Linear(hidden_size, output_size)
    def forward(self, x):
        x = F.relu(self.map1(x))
        x = F.relu(self.map2(x))
        x = F.sigmoid(self.map3(x))
        return x


G = Generator(input_size=g_input_size, hidden_size=g_hidden_size, output_size=g_output_size)
D = Discriminator(input_size=d_input_size, hidden_size=d_hidden_size, output_size=d_output_size)
# input_size = 100^2 hidden_size = 50 output_size = 1
print(G)
print(D)
criterion = nn.BCELoss()
d_optimizer = optim.Adam(D.parameters(), lr = d_lr, betas = optim_betas)
g_optimizer = optim.Adam(G.parameters(), lr = g_lr, betas = optim_betas)

def stats(d):
    return [np.mean(d), np.std(d)]
def extract(v):
    return v.data.storage().tolist()

for epoch in range(n_epoches):
    d_real_input = torch.Tensor(np.random.normal(data_mean, data_standard_deviation,(1, d_input_size)))
    g_input = torch.rand(d_input_size,g_input_size) # 100x1

    D.zero_grad()
    d_real_output = D(Variable(d_real_input))
    d_real_error = criterion(d_real_output, Variable(torch.ones(1)))
    d_real_error.backward()

    d_fake_input = G(Variable(g_input)).detach()#100x1=>100x1
    d_fake_output = D(d_fake_input.t())#100x1=>1
    #???????????
    d_fake_error = criterion(d_fake_output, Variable(torch.zeros(1)))
    d_fake_error.backward()
    d_optimizer.step()
    # Only optimizes D's parameters; changes based on stored gradients from backward()
# ???????????????????????

    G.zero_grad()
    g_output = G(Variable(g_input))# it's the fake data G generated
    g_error = criterion(D(g_output.t()), Variable(torch.ones(1)))
    g_error.backward()
    g_optimizer.step()

    if epoch % print_interval == 0:
        print(epoch)
        print(stats(extract(Variable(d_real_input))))
        print(stats(extract(d_fake_input)))


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容