FDR-P值是什么东西!

概念

FDR,Q value,adjust p value
p-value:衡量一次检验假阳性率的指标(False positive rate) ;
q value:衡量错误发现率的指标(False discovery rate,简称FDR,所有检验中假阳性的概率)。即使用Q value的这个参 数预估FDR。Q value 需要利用公式从p value 校正计算后得到,所以Q value 通常又被称为adjusted p value。所以一般情况下:我们可以认为Q value = FDR = adjusted p value,即三者是一个东西,虽然有些定义上的细微区别,但是问题也不大。

FDR

主要使用的校正办法有两种:Bonferroni 校正;FDR(FalseDiscovery Rate) 校正

1.Bonferroni 校正

Bonferroni 校正法可以称作是“最简单粗暴有效”的校正方法,它拒绝了所有的假阳性结果发生的可能性,通过对p值的阈值进行校正来实现消除假阳性结果。

Bonferroni 校正的公式为p*(1/n),其中p为原始阈值,n为总检验次数。

如果像我们举的例子一样,原始的P值为0.05,检验次数为10000次,那么在Bonferroni 校正中,校正的阈值就等于5%/ 10000 = 0.000005,所有P值超过0.00005的结果都被认为是不可靠的。这样的话假阳性结果在10000次检验中出现的次数为 10000 * 0.000005 =0.5,还不到1次。

但是这也存在问题:Bonferroni 委实太过严格,被校正后的阈值拒绝的不只有假阳性结果,很多阳性结果也会被它拒绝。

2.FDR(FalseDiscovery Rate) 校正

相对Bonferroni 来说,FDR温和得多,这种校正方法不追求完全没有假阳性结果,而是将假阳性结果和真阳性的比例控制在一定范围内。

举个例子,我们最开始设定的情况中进行了10000次检验,这次我们设定FDR<0.05,如果我们的检验对象为差异表达的基因,那么在10000次检验中假如得到了500个基因,那么这500个基因中的假阳性结果小于 500*5% = 25 个。

FDR的计算方法有很多种,这里介绍一个比较常用的:

BH(Benjaminiand Hochberg)法:

BH 法需要将总计m次检验的结果按由小到大进行排序,k为其中一次检验结果的P值所对应的排名。

找到符合原始阈值α的最大的k值,满足P(k)<=α*k/m,认为排名从1到k的所有检验存在显著差异,并计算对应的q值公式为q = p*(m/k)。

举个例子,如果我们有总共六个结果进行FDR校正:
image
按α=0.05进行计算:

排名第四的 P (4) = 0.03 < 0.05*4/6 = 0.033,符合要求

排名第五的 P (5)= 0.045 > 0.05*5/6 = 0.041,不满足P(k)<=α*k/m,因此在这个列表里排名前四的G2,G6,G5,G4 为具有显著差异的基因。

我们也可以用q值进行FDR校正:
image
G3的q值大于0.05,故G2,G6,G5,G4 为具有显著差异的基因。

参考:

中科院生物信息学复习题图文百度文库
多重检验校正
多重假设检验:Bonferroni 和 FDR

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,816评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,729评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,300评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,780评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,890评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,084评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,151评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,912评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,355评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,666评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,809评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,504评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,150评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,121评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,628评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,724评论 2 351