理解Java垃圾回收

在开始学习GC之前你应该知道一个词:stop-the-world。不管选择哪种GC算法,stop-the-world都是不可避免的。Stop-the-world意味着从应用中停下来并进入到GC执行过程中去。一旦Stop-the-world发生,除了GC所需的线程外,其他线程都将停止工作,中断了的线程直到GC任务结束才继续它们的任务。GC调优通常就是为了改善stop-the-world的时间。

基于的分代理论的垃圾回收

在Java程序里不需要显式的分配和释放内存。有些人通过给对象赋值为null或调用System.gc()以期望显式的释放内存空间。给对象设置null虽没什么用,但问题不会太大;如果调用了System.gc()却可能会为系统性能带来严重的波动,即便调用System.gc()系统也未必立即响应去执行垃圾回收。(所幸的是,在NHN未曾看到有工程师这么做。)

在使用Java时,程序员不需要在程序代码中显式的释放内存空间,垃圾回收器会帮你找到不再需要的(垃圾)对象并把他们移出。垃圾回收器的创建基于以下两个假设(也许称之为推论或前提更合适):

  • 大多数对象的很快就会变得不可达
  • 只有极少数情况会出现旧对象持有新对象的引用

这两条假设被称为"弱分代假设"。为了证明此假设,在HotSpot VM中物理内存空间被划分为两部分:新生代(young generate)和老年代(old generation)

新生代:大部分的新创建对象分配在新生代。因为大部分对象很快就会变得不可达,所以它们被分配在新生代,然后消失不再。当对象从新生代移除时,我们称之为"minor GC"。

老年代:存活在新生代中但未变为不可达的对象会被复制到老年代。一般来说老年代的内存空间比新生代大,所以在老年代GC发生的频率较新生代低一些。当对象从老年代被移除时,我们称之为"major GC"(或者full GC)。

看一下下图的示意:


GC区域和数据流向

图中的permanent generation称为方法区,其中存储着类和接口的元信息以及interned的字符串信息。所以这一区域并不是为老年代中存活下来的对象所定义的持久区。方法区中也会发生GC,这里的GC同样也被称为major GC

有些人可能认为:

如果老年代的对象需要持有新生代对象的引用怎么办?

为了处理这种场景,在老年代中设计了"索引表(card table)",是一个512字节的数据块。不管何时老年代需要持有新生代对象的引用时,都会记录到此表中。当新生代中需要执行GC时,通过搜索此表决定新生代的对象是否为GC的目标对象,从而降低遍历所有老年代对象进行检查的代价。该索引表使用写栅栏(write barrier)进行管理。wite barrier是一个允许高性能执行minor GC的设备。尽管它会引入一定的开销,却能带来总体GC时间的大幅降低。

索引表结构

新生代的结构

为了深入理解GC,我们先从新生代开始学起。所有的对象在初始创建时都会被分配在新生代中。新生代又可分为三个部分:

  • 一个Eden区
  • 两个Survivor区

在三个区域中有两个是Survivor区。对象在三个区域中的存活过程如下:

  1. 大多数新生对象都被分配在Eden区。
  2. 第一次GC过后Eden中还存活的对象被移到其中一个Survivor区。
  3. 再次GC过程中,Eden中还存活的对象会被移到之前已移入对象的Survivor区。
  4. 一旦该Survivor区域无空间可用时,还存活的对象会从当前Survivor区移到另一个空的Survivor区。而当前Survivor区就会再次置为空状态。
  5. 经过数次在两个Survivor区域移动后还存活的对象最后会被移动到老年代。

如上所述,两个Survivor区域在任何时候必定有一个保持空白。如果同时有数据存在于两个Survivor区或者两个区域的的使用量都是0,则意味着你的系统可能出现了运行错误。

下图向你展示了经过minor GC把数据迁移到老年代的过程:


GC前后

在HotSpot VM中,使用了两项技术来实现更快的内存分配:"指针碰撞(bump-the-pointer)"和"TLABs(Thread-Local Allocation Buffers)"。

Bump-the-pointer技术会跟踪在Eden上新创建的对象。由于新对象被分配在Eden空间的最上面,所以后续如果有新对象创建,只需要判断新创建对象的大小是否满足剩余的Eden空间。如果新对象满足要求,则其会被分配到Eden空间,同样位于Eden的最上面。所以当有新对象创建时,只需要判断此新对象的大小即可,因此具有更快的内存分配速度。然而,在多线程环境下,将会有别样的状况。为了满足多个线程在Eden空间上创建对象时的线程安全,不可避免的会引入锁,因此随着锁竞争的开销,创建对象的性能也大打折扣。在HotSpot中正是通过TLABs解决了多线程问题TLABs允许每个线程在Eden上有自己的小片空间,线程只能访问其自己的TLAB区域,因此bump-the-pointer能通过TLAB在不加锁的情况下完成快速的内存分配。

本小节快速浏览了新生代上的GC知识。上面讲的两项技术无需刻意记忆,只需要明白对象开始是创建在Eden区,然后经过在Survivor区域上的数次转移而存活下来的长寿对象最后会被移到老年代

新生代垃圾回收

在新生代中,使用“停止-复制”算法进行清理,将新生代内存分为2部分,1部分 Eden区较大,1部分Survivor比较小,并被划分为两个等量的部分。每次进行清理时,将Eden区和一个Survivor中仍然存活的对象拷贝到 另一个Survivor中,然后清理掉Eden和刚才的Survivor。

这里也可以发现,停止复制算法中,用来复制的两部分并不总是相等的(传统的停止复制算法两部分内存相等,但新生代中使用1个大的Eden区和2个小的Survivor区来避免这个问题)

由于绝大部分的对象都是短命的,甚至存活不到Survivor中,所以,Eden区与Survivor的比例较大,HotSpot默认是 8:1,即分别占新生代的80%,10%,10%。如果一次回收中,Survivor+Eden中存活下来的内存超过了10%,则需要将一部分对象分配到 老年代。用-XX:SurvivorRatio参数来配置Eden区域Survivor区的容量比值,默认是8,代表Eden:Survivor1:Survivor2=8:1:1.

老年代垃圾回收

老年代用的算法是标记-整理算法,即:标记出仍然存活的对象(存在引用的),将所有存活的对象向一端移动,以保证内存的连续。

在发生Minor GC时,虚拟机会检查每次晋升进入老年代的大小是否大于老年代的剩余空间大小,如果大于,则直接触发一次Full GC,否则,就查看是否 设置了-XX:+HandlePromotionFailure(允许担保失败),如果允许,则只会进行MinorGC,此时可以容忍内存分配失败;如果不允许,则仍然进行Full GC(这代表着如果设置-XX:+Handle PromotionFailure,则触发MinorGC就会同时触发Full GC,哪怕老年代还有很多内存,所以,最好不要这样做)。

当老年代数据满时,便会执行老年代垃圾回收。根据GC算法的不同其执行过程也会有所区别,所以当你了解了每种GC的特点后再来理解老年代的垃圾回收就会容易很多。

垃圾收集器

在GC机制中,起重要作用的是垃圾收集器,垃圾收集器是GC的具体实现,Java虚拟机规范中对于垃圾收集器没有任何规定,所以不同厂商实现的垃圾 收集器各不相同,HotSpot 1.6版使用的垃圾收集器如下图(图来源于《深入理解Java虚拟机:JVM高级特效与最佳实现》,图中两个收集器之间有连线,说明它们可以配合使用):

在介绍垃圾收集器之前,需要明确一点,就是在新生代采用的停止复制算法中,“停 止(Stop-the-world)”的意义是在回收内存时,需要暂停其他所 有线程的执行。这个是很低效的,现在的各种新生代收集器越来越优化这一点,但仍然只是将停止的时间变短,并未彻底取消停止。

  • Serial收集器:新生代收集器,使用停止复制算法,使用一个线程进行GC,串行,其它工作线程暂停。使用-XX:+UseSerialGC可以使用Serial+Serial Old模式运行进行内存回收(这也是虚拟机在Client模式下运行的默认值)

  • ParNew收集器:新生代收集器,使用停止复制算法,Serial收集器的多线程版,用多个线程进行GC,并行,其它工作线程暂停,关注缩短垃圾收集时间。使用-XX:+UseParNewGC开关来控制使用ParNew+Serial Old收集器组合收集内存;使用-XX:ParallelGCThreads来设置执行内存回收的线程数。

  • Parallel Scavenge 收集器:新生代收集器,使用停止复制算法,关注CPU吞吐量,即运行用户代码的时间/总时间,比如:JVM运行100分钟,其中运行用户代码99分钟,垃 圾收集1分钟,则吞吐量是99%,这种收集器能最高效率的利用CPU,适合运行后台运算(关注缩短垃圾收集时间的收集器,如CMS,等待时间很少,所以适 合用户交互,提高用户体验)。使用-XX:+UseParallelGC开关控制使用Parallel Scavenge+Serial Old收集器组合回收垃圾(这也是在Server模式下的默认值);使用-XX:GCTimeRatio来设置用户执行时间占总时间的比例,默认99,即1%的时间用来进行垃圾回收。使用-XX:MaxGCPauseMillis设置GC的最大停顿时间(这个参数只对Parallel Scavenge有效),用开关参数-XX:+UseAdaptiveSizePolicy可以进行动态控制,如自动调整Eden/Survivor比例,老年代对象年龄,新生代大小等,这个参数在ParNew下没有。

  • Serial Old收集器:老年代收集器,单线程收集器,串行,使用标记整理(整理的方法是Sweep(清理)和Compact(压缩),清理是将废弃的对象干掉,只留幸存的对象,压缩是将移动对象,将空间填满保证内存分为2块,一块全是对象,一块空闲)算法,使用单线程进行GC,其它工作线程暂停(注意,在老年代中进行标记整理算法清理,也需要暂停其它线程),在JDK1.5之前,Serial Old收集器与ParallelScavenge搭配使用。

  • Parallel Old收集器:老年代收集器,多线程,并行,多线程机制与Parallel Scavenge差不错,使用标记整理(与Serial Old不同,这里的整理是Summary(汇总)和Compact(压缩),汇总的意思就是将幸存的对象复制到预先准备好的区域,而不是像Sweep(清理)那样清理废弃的对象)算法,在Parallel Old执行时,仍然需要暂停其它线程。Parallel Old在多核计算中很有用。Parallel Old出现后(JDK 1.6),与Parallel Scavenge配合有很好的效果,充分体现Parallel Scavenge收集器吞吐量优先的效果。使用-XX:+UseParallelOldGC开关控制使用Parallel Scavenge +Parallel Old组合收集器进行收集。

  • CMS(Concurrent Mark Sweep)收集器:老年代收集器,致力于获取最短回收停顿时间(即缩短垃圾回收的时间),使用标记清除算法,多线程,优点是并发收集(用户线程可以和GC线程同时工作),停顿小。使用-XX:+UseConcMarkSweepGC进行ParNew+CMS+Serial Old进行内存回收,优先使用ParNew+CMS(原因见后面),当用户线程内存不足时,采用备用方案Serial Old收集。CMS收集的执行过程是:初始标记(CMS-initial-mark) -> 并发标记(CMS-concurrent-mark) -->预清理(CMS-concurrent-preclean)-->可控预清理(CMS-concurrent-abortable-preclean)-> 重新标记(CMS-remark) -> 并发清除(CMS-concurrent-sweep) ->并发重设状态等待下次CMS的触发(CMS-concurrent-reset)

在JDK 7中,内置了5种GC类型:

  1. Serial GC
  2. Parallel GC
  3. Parallel Old GC(Parallel Compacting GC)
  4. Concurrent Mark & Sweep GC (or "CMS")
  5. Garbage First (G1) GC

其中Serial GC务必不要在生产环境的服务器上使用,这种GC是为单核CPU上的桌面应用设计的。使用Serial GC会明显的损耗应用的性能。

下面分别介绍每种GC的特性。

Serial GC(-XX:+UseSerialGC)

在前面介绍的年轻代垃圾回收中使用了这种类型的GC。在老年代,则使用了一种称之为"mark-sweep-compact"的算法。

  1. 首先该算法需要在老年代中标记出存活着的对象
  2. 然后从前到后检查堆空间中存活的对象,并保持位置不变(把不再存活的对象清理出堆空间,称为空间清理)
  3. 最后,把存活的对象移到堆空间的前面部分以保持已使用的堆空间的连续性,从而把堆空间分为两部分:有对象的和无对象的(称为空间压缩)

Serial GC适用于CPU核数较少且使用的内存空间较小的场景。

Parallel GC(-XX:+UseParallelGC)

Serial GC与Parallel GC的区别

图中可以容易的看出serial GC与parallel GC的区别。Serial GC使用单一线程执行GC,而parallel GC则使用多个线程并发执行,因此parallel GC 较serial GC具有更快的速度。Parallel GC适用于多核CPU且使用了较大内存空间的场景。Parallel GC又被称为"高吞吐GC(throughput GC)"

Parallel Old GC(-XX:+UseParallelOldGC)

Parallel Old GC在JDK 5中被引入,与Parallel GC相比唯一的区别在于Parallel的GC算法是为老年代设计的。它的执行过程分为三步:标记(mark)--总结(summary)--压缩(compaction)。其中summary步骤会会分别为存活的对象在已执行过GC的空间上标出位置,因此与mark-sweep-compact算法中的sweep步骤有所区别,并需要一些复杂步骤才能完成。

CMS GC(-XX:+UseConcMarkSweepGC)

Serial GC与CMS GC

从图上可看出并发标记-清理(Concurrent Mark-Sweep) GC比以后上其他GC都要复杂。开始时的初始标记(initial mark)比较简单,只有靠近类加载器的存活对象会被标记,因此停顿时间(stop-the-world)比较短暂。在并发标记(concurrent mark)阶段,由刚被确认和标记过的存活对象所关联的对象将被会跟踪和检测存活状态。此步骤的不同之处在于有多个线程并行处理此过程。在重标记(remark)阶段,由并发标记所关联的新增或中止的对象瘵被会检测。在最后的并发清理(concurrent sweep)阶段,垃圾回收过程被真正执行。在垃圾回收执行过程中,其他线程依然在执行。得益于CMS GC的执行方式,在GC期间系统中断时间非常短暂。CMS GC也被称为低延迟GC,适用于所有应用对响应时间要求比较严格的场景。

CMS GC虽然具有中断时间断的优势,其缺点也比较明显:

  • 与其他GC相比,CMS GC要求更多的内存空间和CPU资源
  • CMS GC默认不提供内存压缩

使用CMS GC之前需要对系统做全面的分析。另外为了避免过多的内存碎片而需要执行压缩任务时,CMS GC会比任何其他GC带来更多的stop-the-world时间,所以你需要分析和判断压缩任务执行的频率及其耗时情况。

G1 GC

最后我们学习有关G1垃圾回收的介绍。


G1 GC的布局

如果你想清晰的理解GC,请先忘记上面介绍的有关新生代和老年代的知识。如上图所示,每个对象在创建时会分析到一个格子中,后续的GC也是在格子中完成的。每当一个区域分配满对象后,新创建的对象就会分配到另外一个区域,并开始执行GC。在这种GC中不会出现其他GC中的对象在新生代和老生代三区域中移动的现象。G1是为了取代在长期使用中暴露出大量问题且饱受抱怨的CMS GC。

G1最大的改进在于其性能表现,它比以上任何一种GC都更快速。它在JDK6中以早期版本的形式释放出来以用于测试,它真正的发布是在JDK7中。我个人认为在NHN真正在生产环境使用JDK7至少还需要1年的测试时间,所以还需要等待一段时间。并且我听说在JDK6中使用G1偶尔会出现JVM崩溃现象。所以稳定版尚需时日。

注意并发(Concurrent)和并行(Parallel)的区别:

    并发是指用户线程与GC线程同时执行(不一定是并行,可能交替,但总体上是在同时执行的),不需要停顿用户线程(其实在CMS中用户线程还是需要停顿的,只是非常短,GC线程在另一个CPU上执行);  

    并行收集是指多个GC线程并行工作,但此时用户线程是暂停的;  

所以,Serial是串行的,Parallel收集器是并行的,而CMS收集器是并发的.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,542评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,596评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,021评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,682评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,792评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,985评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,107评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,845评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,299评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,612评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,747评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,441评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,072评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,828评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,069评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,545评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,658评论 2 350

推荐阅读更多精彩内容