数据建模实战之通过应用层join实现用户与博客的关联

1、构造用户与博客数据

在构造数据模型的时候,还是将有关联关系的数据,然后分割为不同的实体,类似于关系型数据库中的模型

案例背景:博客网站, 我们会模拟各种用户发表各种博客,然后针对用户和博客之间的关系进行数据建模,同时针对建模好的数据执行各种搜索/聚合的操作

PUT /website/users/1
{
  "name": "小鱼儿",
  "email": "xiaoyuer@sina.com",
  "birthday": "1980-01-01"
}
PUT /website/blogs/1
{
  "title": "我的第一篇博客",
  "content": "这是我的第一篇博客,开通啦!!!",
  "userId": 1
}

一个用户对应多个博客,一对多的关系,做了建模

建模方式,分割实体,类似三范式的方式,用主外键关联关系,将多个实体关联起来

6.0的版本不允许一个index下面有多个type,并且官方说是在接下来的7.0版本中会删掉type

2、搜索小鱼儿发表的所有博客

GET /website/users/_search 
{
  "query": {
    "term": {
      "name.keyword": {
        "value": "小鱼儿"
      }
    }
  }
}
{
  "took": 91,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 0.2876821,
    "hits": [
      {
        "_index": "website",
        "_type": "users",
        "_id": "1",
        "_score": 0.2876821,
        "_source": {
          "name": "小鱼儿",
          "email": "xiaoyuer@sina.com",
          "birthday": "1980-01-01"
        }
      }
    ]
  }
}

比如这里搜索的是,1万个用户的博客,可能第一次搜索,会得到1万个userId

GET /website/blogs/_search 
{
  "query": {
    "constant_score": {
      "filter": {
        "terms": {
          "userId": [
            1
          ]
        }
      }
    }
  }
}

第二次搜索的时候,要放入terms中1万个userId,才能进行搜索,这个时候性能比较差了

{
  "took": 4,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 1,
    "hits": [
      {
        "_index": "website",
        "_type": "blogs",
        "_id": "1",
        "_score": 1,
        "_source": {
          "title": "小鱼儿的第一篇博客",
          "content": "大家好,我是小鱼儿,这是我写的第一篇博客!",
          "userId": 1
        }
      }
    ]
  }
}

上面的操作,就属于应用层的join,在应用层先查出一份数据,然后再查出一份数据,进行关联

3、优点和缺点
优点:数据不冗余,维护方便
缺点:应用层join,如果关联数据过多,导致查询过大,性能很差

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,734评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,931评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,133评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,532评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,585评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,462评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,262评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,153评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,587评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,792评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,919评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,635评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,237评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,855评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,983评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,048评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,864评论 2 354

推荐阅读更多精彩内容

  • 走入了社会工作,大家脾气似乎一下就变大了,像干枯的柴火,一点就着。怎么就没发现,学生时代的我们怎么都是好脾气一个呢...
    路口遇见美好阅读 242评论 0 0
  • 管理者对员工的关爱要从工作中的点点滴滴中做起,这就是所谓的用心换心吧,建立良好的感情,才能让员工心甘情愿的为工...
    夏玉洪阅读 100评论 0 0
  • “听我说法 如筏喻者 法尚应舍 何况非法” 永远别让道路成为你的目的地
    憨憨爹阅读 132评论 0 0
  • 一、热点账户的定义 在银行或者第三方支付系统的账务数据库的处理中,数据从一个账户转出,或者有数据转入一个账户,账户...
    MavericksJi阅读 5,854评论 11 15
  • 【执子之手】2018年2月16日 璨璨+Tina 小小书语者 Day101 1、早起听每周歌单,最爱千字文。2、今...
    cancan妈阅读 135评论 0 0