Python中的正态分布统计

正态分布:
若随机变量x服从有个数学期望为μ,方差为σ2 的正态分布,记为N(μ,σ)
其中期望值决定密度函数的位置,标准差决定分布的幅度,当υ=0,σ=0 时的正态分布是标准正态分布
判断方法有画图/k-s检验

1. Shapiro-Wilk检验(W检验):\color{red}{scipy.stats.shapiro}

  • 样本:小于50
  • 方法:scipy.stats.shapiro(x)
  • 官方文档:SciPy v1.1.0 Reference Guide
  • 参数:x - 待检验数据
  • 返回:W - 统计数;p-value - p值
scipy.stats.shapiro(x)

'''输出结果中第一个为统计量,第二个为P值(统计量越接近1越表明数据和正态分布拟合的好,
P值大于指定的显著性水平,接受原假设,认为样本来自服从正态分布的总体)'''

 

2.Kolmogorov-Smirnov检验(K-S检验):\color{red}{sscipy.stats.kstest}

  • 样本:大于 300
  • 方法:scipy.stats.kstest (rvs, cdf, args = ( ), N = 20, alternative ='two-sided', mode ='approx')
  • 官方文档:SciPy v0.14.0 Reference Guide
  • 参数:rvs - 待检验数据,可以是字符串、数组;
  • cdf - 需要设置的检验,这里设置为 norm,也就是正态性检验;
  • alternative - 设置单双尾检验,默认为 two-sided,还可以设置为单边检验,可以选择 ‘less‘ 或者 ’greater’
  • 返回:W - 统计数;p-value - p值
scipy.stats.kstest(rvs, cdf, args=(), N=20, alternative='two_sided', mode='approx', **kwds)

'''输出结果中第一个为统计量,第二个为P值(注:统计量越接近0就越表明数据和标准正态分布拟合的越好,
如果P值大于显著性水平,通常是0.05,接受原假设,则判断样本的总体服从正态分布)'''

 

3. Anderson-Darling 检验:\color{red}{scipy.stats.anderson}

  • 方法:scipy.stats.anderson (x, dist ='norm' )
  • 该方法是由 scipy.stats.kstest 改进而来的,可以做正态分布、指数分布、Logistic 分布、Gumbel 分布等多种分布检验。默认参数为 norm,即正态性检验。
  • 官方文档:SciPy v1.1.0 Reference Guide
  • 参数:x - 待检验数据;dist - 设置需要检验的分布类型
  • 返回:statistic - 统计数;critical_values - 评判值;significance_level - 显著性水平
scipy.stats.anderson (x, dist ='norm' )

 

4. 正态分布检验:\color{red}{scipy.stats.normaltest}

  • 样本量大于20,小于50, normaltest运用了D’Agostino–Pearson综合测试法,每组样本数大于20
  • 方法:scipy.stats.normaltest (a, axis=0)
  • 该方法专门用来检验数据是否为正态性分布,
  • 官方文档:SciPy v0.14.0 Reference Guide
  • 参数:a - 待检验数据;axis - 可设置为整数或置空,如果设置为 none,则待检验数据被当作单独的数据集来进行检
    验。该值默认为 0,即从 0 轴开始逐行进行检验。
  • 返回:k2 - s^2 + k^2,s 为 skewtest 返回的 z-score,k 为 kurtosistest 返回的 z-score,即标准化值;p-value - p值
scipy.stats.normaltest(a, axis=0)
'''输出结果中第一个为统计量,第二个为P值(注:p值大于显著性水平0.05,认为样本数据符合正态分布)'''
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,576评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,515评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,017评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,626评论 1 296
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,625评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,255评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,825评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,729评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,271评论 1 320
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,363评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,498评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,183评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,867评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,338评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,458评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,906评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,507评论 2 359

推荐阅读更多精彩内容