ThreadPoolExecutor 线程池

ThreadPoolExecutor 线程池

线程的缺点

new Thread(){}.start

  1. 线程的创建和销毁都会消耗大量的时间,当有大量的线程创建和销毁,时间的消耗很明显,导致性能上的缺失。
  2. 大量的线程的创建,执行和销毁是非常消耗CPU和内存的。这样将直接影响系统的吞吐量。导致性能急剧下降。如果内存资源占用比较多。还很容易造成oom。
  3. 大量的线程创建和销毁很容易导致GC频繁的执行。从而发生内存抖动现象。而发生内存抖动,对移动端来说,

而针对上述所描述的问题,解决的办法归根到底就是:重用已有的线程,从而减少线程的创建。
所以这就涉及到线程池(ExecutorService)的概念了,线程池的基本作用就是进行线程的复用.

线程池的使用ExcutorService

使用线程池的好处

  1. 线程的创建和销毁由线程池来维护,线程执行完一个任务不是立即销毁,而是由后续的任务继续复用。从而减少线程的创建和销毁。节约系统的开销。
  2. 线程池旨线程的复用,这就节约我们在使用线程创建和销毁的开销。减少线程频繁的调用,从而节约系统资源,提高系统吞吐量。
  3. 在执行大量异步任务时提高了性能
  4. Java内部嵌套了一套线程池的API,可以方便的控制线程池的最大并发数,线程的定时任务单线程的执行等。

ExcutorService

ExecutorService,它是一个接口,可也叫他线程池的服务,他提供的一些线程的API。真正的线程池是ThreadPoolExecutor。他实现了ExcutorService接口。并封装了一系列的api使得它具有线程池的特性,其中包括工作队列、核心线程数、最大线程数等。

ThreadPoolExector 线程池

既然线程池就是ThreadPoolExecutor,所以我们要创建一个线程池只需要new ThreadPoolExecutor(…);就可以创建一个线程池,而如果这样创建线程池的话,我们需要配置一堆东西,非常麻烦,我们可以看一下它的构造方法就知道了:

public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {...}

参数

corePoolSize:线程池中的核心线程数量
maximumPoolSize:线程池中的最大线程数量
keepAliveTime:这个就是上面说到的“保持活动时间“,上面只是大概说明了一下它的作用,不过它起作用必须在一个前提下,就是当线程池中的线程数量超过了corePoolSize时,它表示多余的空闲线程的存活时间,即:多余的空闲线程在超过keepAliveTime时间内没有任务的话则被销毁。而这个主要应用在缓存线程池中
unit:它是一个枚举类型,表示keepAliveTime的单位,常用的如:TimeUnit.SECONDS(秒)、TimeUnit.MILLISECONDS(毫秒)
workQueue:任务队列,主要用来存储已经提交但未被执行的任务,不同的线程池采用的排队策略不一样,稍后再讲
threadFactory:线程工厂,用来创建线程池中的线程,通常用默认的即可
handler:通常叫做拒绝策略,1、在线程池已经关闭的情况下 2、任务太多导致最大线程数和任务队列已经饱和,无法再接收新的任务 。在上面两种情况下,只要满足其中一种时,在使用execute()来提交新的任务时将会拒绝,而默认的拒绝策略是抛一个RejectedExecutionException异常

所以,官方也不推荐使用这种方法来创建线程池,而是推荐使用Executors的工厂方法来创建线程池,Executors类是官方提供的一个工厂类,它里面封装好了众多功能不一样的线程池,从而使得我们创建线程池非常的简便,主要提供了如下五种功能不一样的线程池:

  1. newFixedThreadPool()

    作用:该方法返回一个固定线程数量的线程池,该线程池中的线程数量始终不变,即不会再创建新的线程,也不会销毁已经创建好的线程,自始自终都是那几个固定的线程在工作,所以该线程池可以控制线程的最大并发数。
    栗子:假如有一个新任务提交时,线程池中如果有空闲的线程则立即使用空闲线程来处理任务,如果没有,则会把这个新任务存在一个任务队列中,一旦有线程空闲了,则按FIFO

  2. newCachedThreadPool

作用:该方法返回一个可以根据实际情况调整线程池中线程的数量的线程池。即该线程池中的线程数量不确定,是根据实际情况动态调整的。
栗子:假如该线程池中的所有线程都正在工作,而此时有新任务提交,那么将会创建新的线程去处理该任务,而此时假如之前有一些线程完成了任务,现在又有新任务提交,那么将不会创建新线程去处理,而是复用空闲的线程去处理新任务。那么此时有人有疑问了,那这样来说该线程池的线程岂不是会越集越多?其实并不会,因为线程池中的线程都有一个“保持活动时间”的参数,通过配置它,如果线程池中的空闲线程的空闲时间超过该“保存活动时间”则立刻停止该线程,而该线程池默认的“保持活动时间”为60s。

  1. newSingleThreadExecutor()

作用:该方法返回一个只有一个线程的线程池,即每次只能执行一个线程任务,多余的任务会保存到一个任务队列中,等待这一个线程空闲,当这个线程空闲了再按FIFO方式顺序执行任务队列中的任务。

  1. newScheduledThreadPool()

作用:该方法返回一个可以控制线程池内线程定时或周期性执行某任务的线程池。

  1. newSingleThreadScheduledExecutor()

作用:该方法返回一个可以控制线程池内线程定时或周期性执行某任务的线程池。只不过和上面的区别是该线程池大小为1,而上面的可以指定线程池的大小。

通过Excutor工厂来获取这五种实例

    ExecutorService fixedThreadPool = Executors.newFixedThreadPool(5);
    ExecutorService singleThreadPool = Executors.newSingleThreadExecutor();
    ExecutorService cachedThreadPool = Executors.newCachedThreadPool();
    ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(5);
    ScheduledExecutorService singleThreadScheduledPool = Executors.newSingleThreadScheduledExecutor();

上面的参数理解起来都比较简单,不过workQueue这个任务队列却要再次说明一下,它是一个BlockingQueue<Runnable>对象,而泛型则限定它是用来存放Runnable对象的,刚刚上面讲了,不同的线程池它的任务队列实现肯定是不一样的,所以,保证不同线程池有着不同的功能的核心就是这个workQueue的实现了,细心的会发现在刚刚的用来创建线程池的工厂方法中,针对不同的线程池传入的workQueue也不一样,下面我总结一下这五种线程池分别用的是什么BlockingQueue:

1、newFixedThreadPool()—>LinkedBlockingQueue
2、newSingleThreadExecutor()—>LinkedBlockingQueue
3、newCachedThreadPool()—>SynchronousQueue
4、newScheduledThreadPool()—>DelayedWorkQueue
5、newSingleThreadScheduledExecutor()—>DelayedWorkQueue

这些队列分别表示:

  1. LinkedBlockingQueue:无界的队列
  2. SynchronousQueue:直接提交的队列
  3. DelayedWorkQueue:等待队列

当然实现了BlockingQueue接口的队列还有:ArrayBlockingQueue(有界的队列)、PriorityBlockingQueue(优先级队列)。这些队列的详细作用就不多介绍了

线程池ThreadPoolExecutor的使用

  1. newFixedThreadPool
ExecutorService fixedThreadPool = Executors.newFixedThreadPool(3);
    for (int i = 1; i <= 10; i++) {
        final int index = i;
        fixedThreadPool.execute(new Runnable() {
             @Override
             public void run() {
                 String threadName = Thread.currentThread().getName();
                 Log.v("zxy", "线程:"+threadName+",正在执行第" + index + "个任务");
                 try {
                        Thread.sleep(2000);
                 } catch (InterruptedException e) {
                        e.printStackTrace();
                 }
             }
         });
     }

上述代码,我们创建了一个线程数为3的固定线程数量的线程池,同理该线程池支持的线程最大并发数也是3,而我模拟了10个任务让它处理,执行的情况则是首先执行前三个任务,后面7个则依次进入任务队列进行等待,执行完前三个任务后,再通过FIFO的方式从任务队列中取任务执行,直到最后任务都执行完毕。

  1. newSingleThreadExecutor
ExecutorService fixedThreadPool = Executors.newFixedThreadPool(3);
    for (int i = 1; i <= 10; i++) {
        final int index = i;
        fixedThreadPool.execute(new Runnable() {
             @Override
             public void run() {
                 String threadName = Thread.currentThread().getName();
                 Log.v("zxy", "线程:"+threadName+",正在执行第" + index + "个任务");
                 try {
                        Thread.sleep(2000);
                 } catch (InterruptedException e) {
                        e.printStackTrace();
                 }
             }
         });
     }

上述代码,我们创建了一个线程数为3的固定线程数量的线程池,同理该线程池支持的线程最大并发数也是3,而我模拟了10个任务让它处理,执行的情况则是首先执行前三个任务,后面7个则依次进入任务队列进行等待,执行完前三个任务后,再通过FIFO的方式从任务队列中取任务执行,直到最后任务都执行完毕。

  1. newSingleThreadExecutor
ExecutorService singleThreadPool = Executors.newSingleThreadExecutor();
        for (int i = 1; i <= 10; i++) {
            final int index = i;
            singleThreadPool.execute(new Runnable() {
                @Override
                public void run() {
                    String threadName = Thread.currentThread().getName();
                    Log.v("zxy", "线程:"+threadName+",正在执行第" + index + "个任务");
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            });
        }

代码还是差不多,只不过改了线程池的实现方式,效果我想大家都知道,即依次一个一个的处理任务,而且都是复用一个线程,效果为:
其实我们通过newSingleThreadExecutor()和newFixedThreadPool()的方法发现,创建一个singleThreadExecutorPool实际上就是创建一个核心线程数和最大线程数都为1的fixedThreadPool。

  1. newCachedThreadPool
 ExecutorService cachedThreadPool = Executors.newCachedThreadPool();
        for (int i = 1; i <= 10; i++) {
            final int index = i;
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            cachedThreadPool.execute(new Runnable() {
                @Override
                public void run() {
                    String threadName = Thread.currentThread().getName();
                    Log.v("zxy", "线程:" + threadName + ",正在执行第" + index + "个任务");
                    try {
                        long time = index * 500;
                        Thread.sleep(time);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            });
        }

为了体现该线程池可以自动根据实现情况进行线程的重用,而不是一味的创建新的线程去处理任务,我设置了每隔1s去提交一个新任务,这个新任务执行的时间也是动态变化的,所以,效果为:

  1. newScheduledThreadPool
        ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(3);
        //延迟2秒后执行该任务
        scheduledThreadPool.schedule(new Runnable() {
            @Override
            public void run() {

            }
        }, 2, TimeUnit.SECONDS);
        //延迟1秒后,每隔2秒执行一次该任务
        scheduledThreadPool.scheduleAtFixedRate(new Runnable() {
            @Override
            public void run() {

            }
        }, 1, 2, TimeUnit.SECONDS);
ScheduledExecutorService singleThreadScheduledPool = Executors.newSingleThreadScheduledExecutor();
        //延迟1秒后,每隔2秒执行一次该任务
        singleThreadScheduledPool.scheduleAtFixedRate(new Runnable() {
            @Override
            public void run() {
                String threadName = Thread.currentThread().getName();
                Log.v("zxy", "线程:" + threadName + ",正在执行");
            }
        },1,2,TimeUnit.SECONDS);
        

自定义线程池

Java内置只为我们提供了五种常用的线程池,一般来说这足够用了,不过有时候我们也可以根据需求来自定义我们自己的线程池,而要自定义不同功能的线程池,上面我们也说了线程池功能的不同归根到底还是内部的BlockingQueue实现不同,所以,我们要实现我们自己相要的线程池,就必须从BlockingQueue的实现上做手脚,而上面也说了BlockingQueue的实现类有多个,那么这次我们就选用PriorityBlockingQueue

  1. 首先我们创建一个基于PriorityBlockingQueue实现的线程池,为了测试方便,我这里把核心线程数量设置为3,

ExecutorService priorityThreadPool = new ThreadPoolExecutor(3,3,0L,TimeUnit.SECONDS,new PriorityBlockingQueue<Runnable>());

  1. 然后创建一个实现Runnable接口的类,并向外提供一个抽象方法供我们实现自定义功能,并实现Comparable接口,实现这个接口主要就是进行优先级的比较,代码如下:
public abstract class PriorityRunnable implements Runnable, Comparable<PriorityRunnable> {
    private int priority;

    public PriorityRunnable(int priority) {
        if (priority < 0)
            throw new IllegalArgumentException();
        this.priority = priority;
    }

    @Override
    public int compareTo(PriorityRunnable another) {
        int my = this.getPriority();
        int other = another.getPriority();
        return my < other ? 1 : my > other ? -1 : 0;
    }

    @Override
    public void run() {
        doSth();
    }

    public abstract void doSth();

    public int getPriority() {
        return priority;
    }
}
  1. 使用我们自己的PriorityRunnable提交任务,整体代码如下:
ExecutorService priorityThreadPool = new ThreadPoolExecutor(3, 3, 0L, TimeUnit.SECONDS, new PriorityBlockingQueue<Runnable>());
        for (int i = 1; i <= 10; i++) {
            final int priority = i;
            priorityThreadPool.execute(new PriorityRunnable(priority) {
                @Override
                public void doSth() {
                    String threadName = Thread.currentThread().getName();
                    Log.v("zxy", "线程:" + threadName + ",正在执行优先级为:" + priority + "的任务");
                    try {
                        Thread.sleep(2000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            });
        }

扩展线程池ThreadPoolExecutor

除了内置的功能外,ThreadPoolExecutor也向外提供了三个接口供我们自己扩展满足我们需求的线程池,这三个接口分别是:

  1. beforeExecute() - 任务执行前执行的方法
  2. afterExecute() -任务执行结束后执行的方法
  3. terminated() -线程池关闭后执行的方法

前面两个方法我们可以在ThreadPoolExecutor内部的runWorker()方法中找到,而runWorker()是ThreadPoolExecutor的内部类Worker实现的方法,Worker它实现了Runnable接口,也正是线程池内处理任务的工作线程,而Worker.runWorker()方法则是处理我们所提交的任务的方法,它会同时被多个线程访问,所以我们看runWorker()方法的实现,由于涉及到多个线程的异步调用,必然是需要使用锁来处理,而这里使用的是Lock来实现的,我们来看看runWorker()方法内主要实现:

优化线程池ThreadPoolExecutor

虽说线程池极大改善了系统的性能,不过创建线程池也是需要资源的,所以线程池内线程数量的大小也会影响系统的性能,大了反而浪费资源,小了反而影响系统的吞吐量,所以我们创建线程池需要把握一个度才能合理的发挥它的优点,通常来说我们要考虑的因素有CPU的数量、内存的大小、并发请求的数量等因素,按需调整。

通常核心线程数可以设为CPU数量+1,而最大线程数可以设为CPU的数量*2+1。

获取CPU数量的方法为

Runtime.getRuntime().availableProcessors();

shutdown()和shutdownNow()的区别

关于线程池的停止,ExecutorService为我们提供了两个方法:shutdown和shutdownNow,这两个方法各有不同,可以根据实际需求方便的运用,如下:

  1. shutdown()方法在终止前允许执行以前提交的任务。
  2. shutdownNow()方法则是阻止正在任务队列中等待任务的启动并试图停止当前正在执行的任务。

关于AsyncTask的实现

大家都知道AsyncTask内部实现其实就是Thread+Handler。其中Handler是为了处理线程之间的通信,而这个Thread到底是指什么呢?通过AsyncTask源码可以得知,其实这个Thread是线程池,AsyncTask内部实现了两个线程池,分别是:串行线程池和固定线程数量的线程池。而这个固定线程数量则是通过CPU的数量决定的。

在默认情况下,我们大都通过AsyncTask::execute()来执行任务的, ,而execute()内部则是调用executeOnExecutor(sDefaultExecutor, params)方法执行的,第一个参数就是指定处理该任务的线程池,而默认情况下AsyncTask是传入串行线程池(在这里不讲版本的变化),也就是任务只能单个的按顺序执行,而我们要是想让AsyncTask并行的处理任务,大家都知道调用AsyncTask::executeOnExecutor(sDefaultExecutor, params)方法传入这个参数即可:AsyncTask.THREAD_POOL_EXECUTOR。
而这个参数的意义在于为任务指定了一个固定线程数量的线程池去处理,从而达到了并行处理的功能,我们可以在源码中看到AsyncTask.THREAD_POOL_EXECUTOR这个参数就是一个固定线程数量的线程池:

public static final Executor THREAD_POOL_EXECUTOR
        = new ThreadPoolExecutor(CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE,
                TimeUnit.SECONDS, sPoolWorkQueue, sThreadFactory);
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,670评论 5 460
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,928评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,926评论 0 320
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,238评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,112评论 4 356
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,138评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,545评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,232评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,496评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,596评论 2 310
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,369评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,226评论 3 313
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,600评论 3 299
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,906评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,185评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,516评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,721评论 2 335

推荐阅读更多精彩内容