基于夜间灯光遥感数据的城镇空间格局研究

基于夜间灯光遥感数据的城镇空间格局研究

基于夜间灯光提取城市建成区的范围,从而进行区域城镇化空间格局分析。

初始化环境

import aie
aie.Authenticate()
aie.Initialize()

读取行政区划数据

feature_collection = aie.FeatureCollection('user/35861bf257e14a8c807ef23cd92101c8')
geometry = feature_collection.geometry()
map = aie.Map(
    center=geometry.getCenter(),
    height=800,
    zoom=5
)

vis_params = {
    'color': '#00FF00'
}
map.addLayer(
    geometry,
    vis_params,
    'region',
    bounds=geometry.getBounds()
)
map
中原城市群

2020年中原城市群

#指定检索数据集,可设置检索的时间范围
dataset = aie.ImageCollection('NOAA_VIIRS_DNB_ANNUAL_V2_VCMSLCFG') \
             .filterDate("2020-01-01", "2020-12-31")
imgs = dataset.select(['average'])
imgs = imgs.mosaic()
imgs = imgs.clip(geometry)

# vis_params = {
#     'bands': 'average',
#     'min': 0.0,
#     'max': 60.0
# }
# map.addLayer(
#     imgs,
#     vis_params,
#     'Nighttime average',
#     bounds=imgs.getBounds()
# )
# map

DN_mean_2020 = imgs.reduceRegion(aie.Reducer.mean())
DN_mean_2020.getInfo()
DN_mean_2020 = DN_mean_2020.getInfo()['average_mean']
# 经过多次对比,将阈值设置为20,这个阈值大家可以设置的更加科学
city_2020 = imgs.gte(aie.Image.constant(20))
mask_params = {
    'bands': 'average',
    'min': 0,
    'max': 1,
    'paletee':['#000000','#ffffff']
}
map.addLayer(
    city_2020,
    mask_params,
    'city_2020',
    bounds=city_2020.getBounds()
)
map
2020年中原城市群
# task = aie.Export.image.toAsset(city_2020,'city_2020',1000)
# task.start()

2018年中原城市群

#指定检索数据集,可设置检索的时间范围
dataset = aie.ImageCollection('NOAA_VIIRS_DNB_ANNUAL_V2_VCMSLCFG') \
             .filterDate("2018-01-01", "2018-12-31")
imgs = dataset.select(['average'])
imgs = imgs.mosaic()
imgs = imgs.clip(geometry)
DN_mean_2018 = imgs.reduceRegion(aie.Reducer.mean())
DN_mean_2018.getInfo()
DN_mean_2018 = DN_mean_2018.getInfo()['average_mean']
city_2018 = imgs.gte(aie.Image.constant(20))
mask_params = {
    'bands': 'average',
    'min': 0,
    'max': 1,
    'paletee':['#000000','#ffffff']
}
map.addLayer(
    city_2018,
    mask_params,
    'city_2018',
    bounds=city_2018.getBounds()
)
map
2018年中原城市群

2016年中原城市群

#指定检索数据集,可设置检索的时间范围
dataset = aie.ImageCollection('NOAA_VIIRS_DNB_ANNUAL_V2_VCMSLCFG') \
             .filterDate("2016-01-01", "2016-12-31")
imgs = dataset.select(['average'])
imgs = imgs.mosaic()
imgs = imgs.clip(geometry)
DN_mean_2016 = imgs.reduceRegion(aie.Reducer.mean())
DN_mean_2016.getInfo()
DN_mean_2016 = DN_mean_2016.getInfo()['average_mean']
city_2016 = imgs.gte(aie.Image.constant(20))
mask_params = {
    'bands': 'average',
    'min': 0,
    'max': 1,
    'paletee':['#000000','#ffffff']
}
map.addLayer(
    city_2016,
    mask_params,
    'city_2016',
    bounds=city_2016.getBounds()
)
map
2016年中原城市群

2014年中原城市群

#指定检索数据集,可设置检索的时间范围
dataset = aie.ImageCollection('NOAA_VIIRS_DNB_ANNUAL_V2_VCMSLCFG') \
             .filterDate("2014-01-01", "2014-12-31")
imgs = dataset.select(['average'])
imgs = imgs.mosaic()
imgs = imgs.clip(geometry)

DN_mean_2014 = imgs.reduceRegion(aie.Reducer.mean())
DN_mean_2014.getInfo()
DN_mean_2014 = DN_mean_2014.getInfo()['average_mean']
city_2014 = imgs.gte(aie.Image.constant(20))
mask_params = {
    'bands': 'average',
    'min': 0,
    'max': 1,
    'paletee':['#000000','#ffffff']
}
map.addLayer(
    city_2014,
    mask_params,
    'city_2014',
    bounds=city_2014.getBounds()
)
map
2014年中原城市群

平均灯光亮度变化

import numpy as np
import matplotlib.pyplot as plt
plt.style.use('ggplot')
x = np.array([2014,2016,2018,2020])
Y = np.array([DN_mean_2014,DN_mean_2016,DN_mean_2018,DN_mean_2020])
plt.figure(figsize=(10,8))
ax = plt.gca()
ax.plot(x,Y,'o-')
ax.set_yticks([0,0.5,1,1.5])
ax.set_xticks([2014,2016,2018,2020])
for a,b in zip(x,Y):
    plt.text(a,b+0.02,'%.4f'%b,ha='center',va='bottom',fontsize=9)
中原城市群夜间灯光平均亮度变化

建成区面积变化

比如还可以做建成区面积的变化对比,这方面还不太支持,所以知识给大家一个思路,还比如CNLI的区域整体城镇化水平动态演化。还有就是阈值的确定还不够合理,大家应该有更加合理确定阈值的方法,本次案例主要引用了《城市与区域规划空间分析实验教程》(第3版)中的实验13。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,635评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,543评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,083评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,640评论 1 296
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,640评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,262评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,833评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,736评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,280评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,369评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,503评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,185评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,870评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,340评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,460评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,909评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,512评论 2 359