简单说说知识图谱

什么是知识图谱

2012 年 5 月 17 日,Google 正式提出了知识图谱(Knowledge Graph)的概念,其初衷是为了优化搜索引擎返回的结果,增强用户搜索质量及体验。

知识图谱并不是一个全新的概念,早在 2006 年就有文献提出了语义网(Semantic Network)的概念,呼吁推广、完善使用本体模型来形式化表达数据中的隐含语义,RDF(resource description framework,资源描述框架)模式和 OWL(Web ontology language,万维网本体语言)就是基于上述目的产生的。


特点

1、用户搜索次数越多,范围越广,搜索引擎就能获取越多信息和内容。

2、赋予字串新的意义,而不只是单纯的字串。

3、融合了所有的学科,以便于用户搜索时的连贯性。

4、为用户找出更加准确的信息,作出更全面的总结并提供更有深度相关的信息。

5、把与关键词相关的知识体系系统化地展示给用户。

6、从整个互联网汲取有用的信息让用户能够获得更多相关的公共资源。


知识图谱的体系架构

知识图谱的架构主要包括自身的逻辑结构以及体系架构。

知识图谱在逻辑结构上可分为模式层与数据层两个层次,数据层主要是由一系列的事实组成,而知识将以事实为单位进行存储。如果用(实体1,关系,实体2)、(实体、属性,属性值)这样的三元组来表达事实,可选择图数据库作为存储介质,例如开源的 Neo4j、Twitter 的 FlockDB、JanusGraph 等。模式层构建在数据层之上,主要是通过本体库来规范数据层的一系列事实表达。本体是结构化知识库的概念模板,通过本体库而形成的知识库不仅层次结构较强,并且冗余程度较小。

知识图谱的体系架构是指其构建模式的结构,如下图所示:


技术架构

应用样例

1、维修知识图谱

2、数学知识图谱

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容