Java TreeMap工作原理及实现

1. 概述


A Red-Black tree based NavigableMap implementation. The map is sorted according to the natural ordering of its keys, or by a Comparator provided at map creation time, depending on which constructor is used.
This implementation provides guaranteed log(n) time cost for the containsKey, get, put and remove operations. Algorithms are adaptations of those in Cormen, Leiserson, and Rivest’s Introduction to Algorithms.

之前已经学习过HashMap和LinkedHashMap了,HashMap不保证数据有序,LinkedHashMap保证数据可以保持插入顺序,而如果我们希望Map可以保持key的大小顺序的时候,我们就需要利用TreeMap了。

TreeMap<Integer, String> tmap = new TreeMap<Integer, String>();
tmap.put(1, "语文");
tmap.put(3, "英语");
tmap.put(2, "数学");
tmap.put(4, "政治");
tmap.put(5, "历史");
tmap.put(6, "地理");
tmap.put(7, "生物");
tmap.put(8, "化学");
for(Entry<Integer, String> entry : tmap.entrySet()) {
    System.out.println(entry.getKey() + ": " + entry.getValue());
}

其大致的结构如下所示:


使用红黑树的好处是能够使得树具有不错的平衡性,这样操作的速度就可以达到log(n)的水平了。具体红黑树的实现不在这里赘述,可以参考数据结构之红黑树wikipedia-红黑树等的实现。

2. put函数

Associates the specified value with the specified key in this map.If the map previously contained a mapping for the key, the old value is replaced.

如果存在的话,old value被替换;如果不存在的话,则新添一个节点,然后对做红黑树的平衡操作。

public V put(K key, V value) {
    Entry<K,V> t = root;
    if (t == null) {
        compare(key, key); // type (and possibly null) check
        root = new Entry<>(key, value, null);
        size = 1;
        modCount++;
        return null;
    }
    int cmp;
    Entry<K,V> parent;
    // split comparator and comparable paths
    Comparator<? super K> cpr = comparator;
        // 如果该节点存在,则替换值直接返回
    if (cpr != null) {
        do {
            parent = t;
            cmp = cpr.compare(key, t.key);
            if (cmp < 0)
                t = t.left;
            else if (cmp > 0)
                t = t.right;
            else
                return t.setValue(value);
        } while (t != null);
    }
    else {
        if (key == null)
            throw new NullPointerException();
        @SuppressWarnings("unchecked")
            Comparable<? super K> k = (Comparable<? super K>) key;
        do {
            parent = t;
            cmp = k.compareTo(t.key);
            if (cmp < 0)
                t = t.left;
            else if (cmp > 0)
                t = t.right;
            else
                return t.setValue(value);
        } while (t != null);
    }
        // 如果该节点未存在,则新建
    Entry<K,V> e = new Entry<>(key, value, parent);
    if (cmp < 0)
        parent.left = e;
    else
        parent.right = e;
        // 红黑树平衡调整
    fixAfterInsertion(e);
    size++;
    modCount++;
    return null;
}

3. get函数


get函数则相对来说比较简单,以log(n)的复杂度进行get

final Entry<K,V> getEntry(Object key) {
    // Offload comparator-based version for sake of performance
    if (comparator != null)
        return getEntryUsingComparator(key);
    if (key == null)
        throw new NullPointerException();
    @SuppressWarnings("unchecked")
        Comparable<? super K> k = (Comparable<? super K>) key;
    Entry<K,V> p = root;
        // 按照二叉树搜索的方式进行搜索,搜到返回
    while (p != null) {
        int cmp = k.compareTo(p.key);
        if (cmp < 0)
            p = p.left;
        else if (cmp > 0)
            p = p.right;
        else
            return p;
    }
    return null;
}
public V get(Object key) {
    Entry<K,V> p = getEntry(key);
    return (p==null ? null : p.value);
}

4. successor后继


TreeMap是如何保证其迭代输出是有序的呢?其实从宏观上来讲,就相当于树的中序遍历(LDR)。我们先看一下迭代输出的步骤

for(Entry<Integer, String> entry : tmap.entrySet()) {
    System.out.println(entry.getKey() + ": " + entry.getValue());
}

根据The enhanced for statement,for语句会做如下转换为:

for(Iterator<Map.Entry<String, String>> it = tmap.entrySet().iterator() ; tmap.hasNext(); ) {
    Entry<Integer, String> entry = it.next();
    System.out.println(entry.getKey() + ": " + entry.getValue());
}

在it.next()的调用中会使用nextEntry调用successor这个是过的后继的重点,具体实现如下:

static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
    if (t == null)
        return null;
    else if (t.right != null) {
        // 有右子树的节点,后继节点就是右子树的“最左节点”
        // 因为“最左子树”是右子树的最小节点
        Entry<K,V> p = t.right;
        while (p.left != null)
            p = p.left;
        return p;
    } else {
        // 如果右子树为空,则寻找当前节点所在左子树的第一个祖先节点
        // 因为左子树找完了,根据LDR该D了
        Entry<K,V> p = t.parent;
        Entry<K,V> ch = t;
        // 保证左子树
        while (p != null && ch == p.right) {
            ch = p;
            p = p.parent;
        }
        return p;
    }
}

怎么理解这个successor呢?只要记住,这个是中序遍历就好了,L-D-R。具体细节如下:

a. 空节点,没有后继
b. 有右子树的节点,后继就是右子树的“最左节点”
c. 无右子树的节点,后继就是该节点所在左子树的第一个祖先节点

a.好理解,不过b, c,有点像绕口令啊,没关系,上图举个例子就懂了!

有右子树的节点,节点的下一个节点,肯定在右子树中,而右子树中“最左”的那个节点则是右子树中最小的一个,那么当然是右子树的“最左节点”,就好像下图所示:



无右子树的节点,先找到这个节点所在的左子树(右图),那么这个节点所在的左子树的父节点(绿色节点),就是下一个节点。

参考资料


TreeMap (Java Platform SE 8)
浅谈算法和数据结构: 九 平衡查找树之红黑树
Java提高篇(二七)——-TreeMap
数据结构之红黑树
wikipedia-红黑树
Red-Black Trees
How TreeMap searches successor for given Entry?

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,245评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,749评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,960评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,575评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,668评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,670评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,664评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,422评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,864评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,178评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,340评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,015评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,646评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,265评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,494评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,261评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,206评论 2 352

推荐阅读更多精彩内容