Numbers can be regarded as product of its factors. For example,
8 = 2 x 2 x 2;
= 2 x 4.
Write a function that takes an integer n and return all possible combinations of its factors.
Note:
You may assume that n is always positive.
Factors should be greater than 1 and less than n.
Examples:
input: 1
output:
[]
input: 37
output:
[]
input: 12
output:
[
[2, 6],
[2, 2, 3],
[3, 4]
]
input: 32
output:
[
[2, 16],
[2, 2, 8],
[2, 2, 2, 4],
[2, 2, 2, 2, 2],
[2, 4, 4],
[4, 8]
]
总结见:http://www.jianshu.com/p/883fdda93a66
Solution:Backtracking
实现1a: regular
实现1b: i <= (int) Math.sqrt(n) instead of n, to speed up. some small changes required for corner cases.
Time Complexity: T(N) = T(N/2) + T(N/3) + T(N/4) + .. ? Space Complexity: O(N)
Solution1a Code:
class Solution {
public List<List<Integer>> getFactors(int n) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
List<Integer> cur_res = new ArrayList<>();
getFactors(n, 2, cur_res, result);
return result;
}
public void getFactors(int n, int start, List<Integer> cur_res, List<List<Integer>> result){
if (n == 1 && cur_res.size() > 1) { // cur_res.size() > 1: to avoid the n itself to be the factor
result.add(new ArrayList<Integer>(cur_res));
return;
}
for (int i = start; i <= n; ++i) {
if (n % i == 0) {
cur_res.add(i);
getFactors(n / i, i, cur_res, result);
cur_res.remove(cur_res.size() - 1);
}
}
}
}
Solution1b Code:
class Solution {
public List<List<Integer>> getFactors(int n) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
List<Integer> cur_res = new ArrayList<>();
getFactors(n, 2, cur_res, result);
return result;
}
public void getFactors(int n, int start, List<Integer> cur_res, List<List<Integer>> result){
if (n == 1 ) {
if(cur_res.size() > 1) { // cur_res.size() > 1: to avoid the n itself to be the factor
result.add(new ArrayList<Integer>(cur_res));
}
return;
}
for (int i = start; i <= (int) Math.sqrt(n); ++i) { // ===> here, change 1
if (n % i == 0) {
cur_res.add(i);
getFactors(n / i, i, cur_res, result);
cur_res.remove(cur_res.size() - 1);
}
}
int i = n; // ===> here, change 2, try to 处理 (int) Math.sqrt(n) 达不到原数的情况,如根2 = 1,则达不到2,这里corner case 加上
cur_res.add(i);
getFactors(n / i, i, cur_res, result);
cur_res.remove(cur_res.size() - 1);
}
}