CAS机制,讲的还算通俗易懂

我们先看一段代码:

启动两个线程,每个线程中让静态变量count循环累加100次。

最终输出的count结果一定是200吗?因为这段代码是非线程安全的,所以最终的自增结果很可能会小于200。我们再加上synchronized同步锁,再来看一下。

加了同步锁之后,count自增的操作变成了原子性操作,所以最终输出一定是count=200,代码实现了线程安全。虽然synchronized确保了线程安全,但是在某些情况下,这并不是一个最有的选择。

关键在于性能问题。

synchronized关键字会让没有得到锁资源的线程进入BLOCKED状态,而后在争夺到锁资源后恢复为RUNNABLE状态,这个过程中涉及到操作系统用户模式和内核模式的转换,代价比较高。

尽管JAVA 1.6为synchronized做了优化,增加了从偏向锁到轻量级锁再到重量级锁的过过度,但是在最终转变为重量级锁之后,性能仍然比较低。所以面对这种情况,我们就可以使用java中的“原子操作类”。

所谓原子操作类,指的是java.util.concurrent.atomic包下,一系列以Atomic开头的包装类。如AtomicBoolean,AtomicUInteger,AtomicLong。它们分别用于Boolean,Integer,Long类型的原子性操作。

现在我们尝试使用AtomicInteger类:

使用AtomicInteger之后,最终的输出结果同样可以保证是200。并且在某些情况下,代码的性能会比synchronized更好。

而Atomic操作类的底层正是用到了“CAS机制”。

CAS是英文单词Compare and Swap的缩写,翻译过来就是比较并替换。

CAS机制中使用了3个基本操作数:内存地址V,旧的预期值A,要修改的新值B。

更新一个变量的时候,只有当变量的预期值A和内存地址V当中的实际值相同时,才会将内存地址V对应的值修改为B。

我们看一个例子:

1. 在内存地址V当中,存储着值为10的变量。

2. 此时线程1想把变量的值增加1.对线程1来说,旧的预期值A=10,要修改的新值B=11.

3. 在线程1要提交更新之前,另一个线程2抢先一步,把内存地址V中的变量值率先更新成了11。

4. 线程1开始提交更新,首先进行A和地址V的实际值比较,发现A不等于V的实际值,提交失败。

5. 线程1 重新获取内存地址V的当前值,并重新计算想要修改的值。此时对线程1来说,A=11,B=12。这个重新尝试的过程被称为自旋。

6. 这一次比较幸运,没有其他线程改变地址V的值。线程1进行比较,发现A和地址V的实际值是相等的。

7. 线程1进行交换,把地址V的值替换为B,也就是12.

从思想上来说,synchronized属于悲观锁,悲观的认为程序中的并发情况严重,所以严防死守,CAS属于乐观锁,乐观地认为程序中的并发情况不那么严重,所以让线程不断去重试更新。

在java中除了上面提到的Atomic系列类,以及Lock系列类夺得底层实现,甚至在JAVA1.6以上版本,synchronized转变为重量级锁之前,也会采用CAS机制。

CAS的缺点:

1) CPU开销过大

在并发量比较高的情况下,如果许多线程反复尝试更新某一个变量,却又一直更新不成功,循环往复,会给CPU带来很到的压力。

2) 不能保证代码块的原子性

CAS机制所保证的知识一个变量的原子性操作,而不能保证整个代码块的原子性。比如需要保证3个变量共同进行原子性的更新,就不得不使用synchronized了。

3) ABA问题

这是CAS机制最大的问题所在。(后面有介绍)


我们下面来介绍一下两个问题:

1. JAVA中CAS的底层实现

2. CAS的ABA问题和解决办法。

我们看一下AtomicInteger当中常用的自增方法incrementAndGet:

public final int incrementAndGet() {

    for (;;) {

        int current = get();

        int next = current + 1;

        if (compareAndSet(current, next))

            return next;

    }

}

private volatile int value; 

public final int get() {

    return value;

}

这段代码是一个无限循环,也就是CAS的自旋,循环体中做了三件事:

1. 获取当前值

2. 当前值+1,计算出目标值

3. 进行CAS操作,如果成功则跳出循环,如果失败则重复上述步骤

这里需要注意的重点是get方法,这个方法的作用是获取变量的当前值。

如何保证获取的当前值是内存中的最新值?很简单,用volatile关键字来保证(保证线程间的可见性)。我们接下来看一下compareAndSet方法的实现:

compareAndSet方法的实现很简单,只有一行代码。这里涉及到两个重要的对象,一个是unsafe,一个是valueOffset。

什么是unsafe呢?Java语言不像C,C++那样可以直接访问底层操作系统,但是JVM为我们提供了一个后门,这个后门就是unsafe。unsafe为我们提供了硬件级别的原子操作。

至于valueOffset对象,是通过unsafe.objectFiledOffset方法得到,所代表的是AtomicInteger对象value成员变量在内存中的偏移量。我们可以简单的把valueOffset理解为value变量的内存地址。

我们上面说过,CAS机制中使用了3个基本操作数:内存地址V,旧的预期值A,要修改的新值B。

而unsafe的compareAndSwapInt方法的参数包括了这三个基本元素:valueOffset参数代表了V,expect参数代表了A,update参数代表了B。

正是unsafe的compareAndSwapInt方法保证了Compare和Swap操作之间的原子性操作。

我们现在来说什么是ABA问题。假设内存中有一个值为A的变量,存储在地址V中。

此时有三个线程想使用CAS的方式更新这个变量的值,每个线程的执行时间有略微偏差。线程1和线程2已经获取当前值,线程3还未获取当前值。

接下来,线程1先一步执行成功,把当前值成功从A更新为B;同时线程2因为某种原因被阻塞住,没有做更新操作;线程3在线程1更新之后,获取了当前值B。

在之后,线程2仍然处于阻塞状态,线程3继续执行,成功把当前值从B更新成了A。

最后,线程2终于恢复了运行状态,由于阻塞之前已经获得了“当前值A”,并且经过compare检测,内存地址V中的实际值也是A,所以成功把变量值A更新成了B。

看起来这个例子没啥问题,但如果结合实际,就可以发现它的问题所在。

我们假设一个提款机的例子。假设有一个遵循CAS原理的提款机,小灰有100元存款,要用这个提款机来提款50元。

由于提款机硬件出了点问题,小灰的提款操作被同时提交了两次,开启了两个线程,两个线程都是获取当前值100元,要更新成50元。

理想情况下,应该一个线程更新成功,一个线程更新失败,小灰的存款值被扣一次。

线程1首先执行成功,把余额从100改成50.线程2因为某种原因阻塞。这时,小灰的妈妈刚好给小灰汇款50元。

线程2仍然是阻塞状态,线程3执行成功,把余额从50改成了100。

线程2恢复运行,由于阻塞之前获得了“当前值”100,并且经过compare检测,此时存款实际值也是100,所以会成功把变量值100更新成50。

原本线程2应当提交失败,小灰的正确余额应该保持100元,结果由于ABA问题提交成功了。

怎么解决呢?加个版本号就可以了。

真正要做到严谨的CAS机制,我们在compare阶段不仅要比较期望值A和地址V中的实际值,还要比较变量的版本号是否一致。

我们仍然以刚才的例子来说明,假设地址V中存储着变量值A,当前版本号是01。线程1获取了当前值A和版本号01,想要更新为B,但是被阻塞了。

这时候,内存地址V中变量发生了多次改变,版本号提升为03,但是变量值仍然是A。

随后线程1恢复运行,进行compare操作。经过比较,线程1所获得的值和地址的实际值都是A,但是版本号不相等,所以这一次更新失败。


在Java中,AtomicStampedReference类就实现了用版本号作比较额CAS机制。


1. java语言CAS底层如何实现?

利用unsafe提供的原子性操作方法。

2.什么事ABA问题?怎么解决?

当一个值从A变成B,又更新回A,普通CAS机制会误判通过检测。

利用版本号比较可以有效解决ABA问题。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351