(一) 分治算法

- 基本思想
- 适用情况
- 基本步骤
- 程序设计
  - 思维过程
  - 一般的算法设计模式
  - 复杂度
- 经典运用

# 基本思想:


  1. 字面上的解释是“分而治之”,就是将一个规模为N的问题分解为K个规模较小的子问题( 反复分解直到问题小到可直接求解为止),使这些子问题相互独立可分别求解,再将k个子问题的解合并成原问题的解。

    • 这些子问题相互独立且与原问题性质相同(规模一般也相同)。只要求出子问题的解,合并就可得到原问题的解。
  2. 在分治法中,子问题的解法通常与原问题相同。这自然导致 递归过程
    分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。

# 适用情况


分治法能解决的问题一般具有以下4个特征:
(1)当问题的规模缩小到一定的程度就可以容易地解决。
(2)问题可以分解为若干个规模较小的问题,即该问题具有最优子结构性质。
(3)利用该问题分解出的子问题的解可以合并为该问题的解(关键);
(4)各个子问题是相互独立的,即子问题之间不包含公共的子问题。

  • 第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;
  • 第二条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用;
  • 第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。
  • 第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好

这个思想是很多高效算法的基础,在各种排序方法中,如:归并排序、堆排序、快速排序等,都存在有分治的思想。还有傅立叶变换(快速傅立叶变换)等

# 基本步骤:


  1. 分解,将要解决的问题划分成若干个规模较小的同类问题
  2. 求解,当子问题划分得足够小时,用较简单的方法解决
  3. 合并,按原问题的要求,将子问题的解逐层合并构成原问题的解


    分治

要点:

  • 分几个?子问题规模多大? 最好使子问题的规模大致相同。即将一个问题分成大小相等的 k 个子问题的处理方法是行之有效的。
  • 子问题如何求解?
  • 合并原问题的解?
  • 分析时间复杂性

# 程序设计


## 依据分治法设计程序时的思维过程

实际上就是类似于数学归纳法,找到解决本问题的求解方程公式,然后根据方程公式设计递归程序。

  1. 一定是先找到最小问题规模时的求解方法
  2. 然后考虑随着问题规模增大时的求解方法
  3. 找到求解的递归函数式后(各种规模或因子),设计递归程序即可。
    分治的算法思想与递归往往是相伴而生的
## 一般的算法设计模式如下:
Divide-and-Conquer(P)

1. if |P|≤n0
2. then return(ADHOC(P))
3. 将P分解为较小的子问题 P1 ,P2 ,…,Pk
4. for i←1 to k
5. do yi ← Divide-and-Conquer(Pi) △ 递归解决Pi
6. T ← MERGE(y1,y2,…,yk) △ 合并子问题
7. return(T)

其中:
    |P|表示问题P的规模;
    n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。
    ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。因此,当P的规模不超过n0时直接用算法ADHOC(P)求解。
    算法MERGE(y1,y2,…,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,…,Pk的相应的解y1,y2,…,yk合并为P的解。
## 复杂度
  • 一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:
    T(n) = kT(n/m)+f(n)

  • 通过迭代法求得方程的解:
    递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而
    mi≤n<mi+1时,T(mi)≤T(n)<T(mi+1)

# 经典运用:


  • 二分查找
  • 合并(归并)排序
  • 快速排序
  • 最大子段和
  • 最近对
  • 凸包
  • 汉诺塔
  • 大数相乘问题
  • 比赛日程安排
  • 寻找假币问题
  • Strassen矩阵乘法
  • 棋盘覆盖
  • 线性时间选择
    ...
//示例代码:二分查找
#include <stdio.h>
 
int bin_search(int A[], int n, int key)
{
    int low = 0, high = 0, mid = 0;
    high = n - 1;
    while (low <= high) {
        mid = (low + high) / 2;
        if (A[mid] == key) { //查找成功,返回mid
            return mid;
        }
        if (A[mid] < key) { //在后半序列中查找
            low = mid + 1;
        }
        if (A[mid] > key) { //在前半序列中查找
            high = mid - 1;
        }
    }
    return -1; //查找失败
}
 
int main(int argc, const char * argv[]) {
    // insert code here...
    int A[10] = {2, 3, 5, 7, 8, 10, 12, 15, 19, 21};
    int i = 0, n = 0, addr = 0;
    printf("The contents of the Array A[10] are\n");
    for (i = 0; i < 10; i++) {
        printf("%d ",A[i]); //显示数组A中的内容
    }
    printf("\nPlease input a interger for search\n");
    scanf("%d", &n); //输入待查找得元素
    addr = bin_search(A, 10, n); //折半查找,返回该元素在数组中的下标
    if (-1 != addr) {
        printf("%d is at the %dth unit is array A\n", n, addr);
    }else{
        printf("There is no %d in array A\n", n); //查找失败
    }
    getchar();
     
    return 0;
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,544评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,430评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,764评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,193评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,216评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,182评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,063评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,917评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,329评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,543评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,722评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,425评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,019评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,671评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,825评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,729评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,614评论 2 353

推荐阅读更多精彩内容