ML - 简单线性回归 (Simple Linear Regression)

1. 统计量:描述数据特征
  • 集中趋势衡量
  1. 均值(平均数,平均值)(mean)


{6, 2, 9, 1, 2}
(6 + 2 + 9 + 1 + 2) / 5 = 20 / 5 = 4

  1. 中位数 (median)
    将数据中的各个数值按照大小顺序排列,居于中间位置的变量
  • 给数据排序:1, 2, 2, 6, 9
    找出位置处于中间的变量:2
    当n为基数的时候:直接取位置处于中间的变量
    当n为偶数的时候,取中间两个量的平均值
  1. 众数 (mode)
    数据中出现次数最多的数

  2. 离散程度衡量

  • 方差(variance)


{6, 2, 9, 1, 2}
① (6 - 4)^2 + (2 - 4) ^2 + (9 - 4)^2 + (1 - 4)^2 + (2 - 4)^2
= 4 + 4 + 25 + 9 + 4
= 46
② n - 1 = 5 - 1 = 4
③ 46 / 4 = 11.5

  • 标准差 (standard deviation)



    s = sqrt(11.5) = 3.39

2. 介绍
  • 回归(regression) Y变量为连续数值型(continuous numerical variable)
    如:房价,人数,降雨量

  • 分类(Classification): Y变量为类别型(categorical variable)
    如:颜色类别,电脑品牌,有无信誉

简单线性回归(Simple Linear Regression)
  • 很多做决定过程通常是根据两个或者多个变量之间的关系

  • 回归分析(regression analysis)用来建立方程模拟两个或者多个变量之间如何关联

  • 被预测的变量叫做:因变量(dependent variable), y, 输出(output)

  • 被用来进行预测的变量叫做: 自变量(independent variable), x, 输入(input)

简单线性回归介绍
  • 简单线性回归包含一个自变量(x)和一个因变量(y)
  • 以上两个变量的关系用一条直线来模拟
  • 如果包含两个以上的自变量,则称作多元回归分析(multiple regression)
简单线性回归模型
  • 被用来描述因变量(y)和自变量(X)以及偏差(error)之间关系的方程叫做回归模型

  • 简单线性回归的模型是:


简单线性回归方程

E(y) = β01x

这个方程对应的图像是一条直线,称作回归线

其中,β0是回归线的截距

β1是回归线的斜率

E(y)是在一个给定x值下y的期望值(均值)

正向线性关系:
负向线性关系:
无关系
估计的简单线性回归方程

ŷ=b0+b1x

这个方程叫做估计线性方程(estimated regression line)
其中,b0是估计线性方程的纵截距
b1是估计线性方程的斜率
ŷ是在自变量x等于一个给定值的时候,y的估计值

线性回归分析流程:
关于偏差ε的假定

是一个随机的变量,均值为0
ε的方差(variance)对于所有的自变量x是一样的
ε的值是独立的
ε满足正态分布

简单线性回归模型举例:

汽车卖家做电视广告数量与卖出的汽车数量:

  • 如何练处适合简单线性回归模型的最佳回归线?


使sum of squares最小
  • 计算


分子 = (1-2)(14-20)+(3-2)(24-20)+(2-2)(18-20)+(1-2)(17-20)+(3-2)(27-20)

= 6 + 4 + 0 + 3 + 7

= 20

分母 = (1-2)^2 + (3-2)^2 + (2-2)^2 + (1-2)^2 + (3-2)^2

= 1 + 1 + 0 + 1 + 1

=4

b1 = 20/4 =5

b0 = 20 - 5*2 = 20 - 10 = 10

  • 预测:
    假设有一周广告数量为6,预测的汽车销售量是多少?


x_given = 6

Y_hat = 5*6 + 10 = 40

  • Python实现:
import numpy as np

def fitSLR(x, y):
    n = len(x)
    dinominator = 0
    numerator = 0
    for i in range(0, n):
        numerator += (x[i] - np.mean(x)) * (y[i] - np.mean(y))
        dinominator += (x[i] - np.mean(x)) ** 2
    b1 = numerator / float(dinominator)
    b0 = np.mean(y) / float(np.mean(x))
    return b0, b1


def predict(x, b0, b1):
    return b0 + x * b1


x = [1, 3, 2, 1, 3]
y = [14, 24, 18, 17, 27]

b0, b1 = fitSLR(x, y)

print("intercept:")
print(b0)
print("slope:")
print(b1)

x_test = 6

y_test = predict(6, b0, b1)

print("y_test:")
print(y_test)

结果
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,734评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,931评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,133评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,532评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,585评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,462评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,262评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,153评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,587评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,792评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,919评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,635评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,237评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,855评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,983评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,048评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,864评论 2 354

推荐阅读更多精彩内容