推荐系统论文阅读(二十三)-神经图协同过滤NGCF

论文:

论文题目:《Neural Graph Collaborative Filtering》

论文地址:https://arxiv.org/pdf/1905.08108.pdf

本论文是关于图结构的协同过滤算法,在原始的矩阵分解和基于深度学习的方法中,通常是通过映射描述用户(或物品)的现有特征(例如ID和属性)来获得用户(或物品)的嵌入。从而利用user和item的embedding进行协同召回。但是作者认为这种方法的固有缺点是:在user与item的interaction数据中潜伏的协作信号(collaborative signal)未在嵌入过程中进行编码。这样,所得的嵌入可能不足以捕获协同过滤效果。

让我们一起来看一下本论文是怎么利用数据中潜伏的协作信号的吧。

一 、背景

推荐算法被广泛的运用在各个领域中,在电商领域,社交媒体,广告等领域都发挥着至关重要的作用。推荐系统的核心内容就是根据用户以前的购买和点击行为来评估用户对一个物品的喜爱程度,从而针对每个用户进行个性化推荐。协同过滤算法认为历史行为相似的用户之间的兴趣是相同的,所以给用户推荐的是同类型用户的爱好,也就是UserCF,而ItemCF给用户推荐的是跟历史行为相近的物品。

传统的协同过滤方法要么是基于矩阵分解,要么是基于深度学习的,这两种方法都忽略了一个非常关键的信息---user和item交互的协作信号,该信号隐藏在user和item的交互过程中。原始的协同过滤方法忽略了这种信息,所以在进行user 和 item representation时就不足以较好的进行embedding。

本论文通过将用户项交互(更具体地说是二分图结构)集成到embedding过程中,开发了一个新的推荐框架神经图协同过滤(NGCF),该框架通过在其上传播embedding来利用user-item图结构。这种方法在用户项目图中进行高阶连通性的表达建模,从而以显式方式将协作信号有效地注入到embedding过程中。

二 、模型

在介绍模型之前先来讲解一下什么是useritem interaction以及什么是高阶的useritem interaction。

我们先看左边的图,这个图就是useritem interaction,u1是我们待推荐的用户,用双圆圈表示,他交互过的物品有i1,i2,i3。在看右边这个树形结构的图,这个图是u1的高阶interaction图,注意只有l > 1的才是u1的高阶连接。观察到,这么一条路径,u1 ← i2 ← u2,指示u1和u2之间的行为相似性,因为两个用户都已与i2进行了交互。而另一条更长的路径,u1←i2←u2←i4暗示u1可能会点击i4,因为他的相似用户u2之前已经购买过i4。另一方面,用户u1在l = 3这一层会更倾向于i4而不是i5,理由是i4到u1有两条路径而i5只有一条。

当然这种树结构是不可能通过构建真正的树节点来表示的,因为树模型比较复杂,而且结构很大,没法对每个用户构建一个树,这样工作量太大了。那么怎么设计模型结构可以达到跟这个high-order connectivity的效果呢,这个就要运用到神经网络了。通过设计一个embedding propagation layer来表示这种embedding 在每个层之间的传递。

还是拿上面那张图举例子,堆叠两层可捕获u1←i2←u2的行为相似性,堆叠三层可捕获u1←i2←u2←i4的潜在推荐以及信息流的强度(由层之间的可训练权重来评估),并确定i4和i5的推荐优先级。

2.1 Embedding Layer

这个跟传统的embedding是一样的,都是对原始的userID和itemID做embedding,跟传统embedding不同的地方是,在我们的NGCF框架中,我们通过在用户-项目交互图上传播embedding来优化embedding。 由于embedding优化步骤将协作信号显式注入到embedding中,因此可以为推荐提供更有效的embedding。

2.2 Embedding Propagation Layers

这一层是本文的核心内容,下面我们来进行详细的解读。

2.2.1 First-order Propagation. 

从直观上来看,用户交互过的item会给用户的偏好带来最直接的依据。类似地,交互过某个item的用户可以视为该item的特征,并可以用来衡量两个item的协同相似性。 我们以此为基础在连接的用户和项目之间执行embedding propogation,并通过两个主要操作来制定流程:消息构建和消息聚合。

Message Construction(消息构建)

对于连接的user-item对(u,i),我们定义从i到u的消息为:

其中ei是i的embedding,eu是u的embedding,pui是用于控制每次传播的衰减因子,函数f是消息构建函数,f的定义为:

其中W1和W2用来提取有用的embedding信息,可以看到W2控制的i和u直接的交互性,这使得消息取决于ei和eu之间的亲和力,比如,传递更多来自相似项的消息。

另一个重要的地方是Nu和Ni,pui = 1/ \sqrt{|Nu||Ni|} 。Nu和Ni表示用户u和item i的第一跳邻居。 从表示学习的角度来看,pui反映了历史item对用户偏好的贡献程度。 从消息传递的角度来看,考虑到正在传播的消息应随路径长度衰减,因此pui可以解释为折扣因子。

Message Aggregation

聚合方法如下

其中e_{u}^{(1)} 表示在第一嵌入传播层之后获得的用户u的表示。激活函数采用的是leakyrelu,这个函数适合对pos和neg信号进行编码。

另一个重要的信息是m_{u\leftarrow u} ,它的定义如下:

这个信息的主要作用是保留原始的特征信息。

至此,我们得到了e_{u}^{(1)} ,同样的方法,我们也能获得e_{i}^{(1)} ,这个都是first order connectivoty的信息。

2.2.2 High-order Propagation

根据前面的计算方式,我们如果将多个Embedding Propagation Layers进行堆叠,我们就可以得到high order connectivity信息了:

计算方式如下:

当我看到这里的时候,我的脑子里产生了一个大大的疑惑,我们在计算第l层的eu和ei时都需要第l-1层的信息,那么我们怎么知道ei和eu在第l层是否存在呢?也就是说出现u侧的总层数l大于i侧总层数的时候,我们如何根据第l-1层的ei来计算第l层的e呢?经过思考,我感觉应该是这样的,训练样本应该是一条path,也就是这个例子是u1 ← i2 ← u2 ← i4这条path,所以可以保证u1跟i4的层数l是一样的,所以不存在上面那个层数不匹配的问题。

ps:看到后面的实验结果才知道L是固定的所以每一层都不会缺失。

还有一个就是,不同层之间的W是不一样的,每一层都有着自己的参数,这个看公式就知道,理由就是我们在提取不同层信息的时候需要不同的W进行信息提取。

另一个疑惑是pui到底是不是每一个l层都一样?这里看公式好像就是指的是第一跳的Nu和Ni进行就计算的结果。

这部分内容是为了在进行batch训练的时候进行矩阵运算所推导的数学过程,其实跟之前我们讲的那个过程在数学上的计算是完全一样的,你想象一下,如果不用矩阵进行运算,在训练过程中要如何进行这么复杂的交互运算。

2.3 Model Prediction

当进行了l层的embedding propagation后,我们就拥有了l个eu和l个ei,我们将他们进行concate操作:

这样,我们不仅可以通过嵌入传播层丰富初始嵌入,还可以通过调整L来控制传播范围。

最后,我们进行内积计算,以评估用户对目标商品的偏好:

2.4 Optimization

采用的是pair-wise方式中的bpr loss:


三 、实验结果


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,319评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,801评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,567评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,156评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,019评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,090评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,500评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,192评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,474评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,566评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,338评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,212评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,572评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,890评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,169评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,478评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,661评论 2 335

推荐阅读更多精彩内容