redis热点key

热Key问题

所谓热key问题就是,突然有几十万的请求去访问redis上的某个特定key。那么,这样会造成流量过于集中,达到物理网卡上线,从而导致这台redis的服务器宕机。

怎么发现热key

方法一:凭借业务经验,进行预估哪些是热key
其实这个方法还是挺有可行性的。比如某商品在做秒杀,那这个商品的key就可以判断出是热key。缺点很明显,并非所有业务都能预估出哪些key是热key。
方法二:在客户端进行收集
这个方式就是在操作redis之前,加一行代码进行数据统计。那么这个数据统计的方式有很多种,也可以是给外部的通讯系统发送一个通知信息。缺点就是对客户端代码造成入侵。
方法三:在Proxy做收集
有些集群架构是下面这样的,Proxy可以是Twemproxy,是统一的入口。可以在Proxy层做收集上报,但是缺点很明显,并非所有的redis集群架构都有proxy。

image.png

方法四:用redis自带命令
(1)monitor命令,该命令可以实时抓取出redis服务器接收到的命令,然后写代码统计出热key是啥。当然,也有现成的分析工具可以给你使用,比如redis-faina。但是该命令在高并发的条件下,有内存暴增的隐患,还会降低redis的性能。
(2)hotkeys参数,redis4.0.4提供了redis-cli的热点key发现功能,执行redis-cli时加上-hotkeys选项即可。但是该参数在执行的时候,如果key比较多,执行起来比较慢。
方法五:自己抓包评估
Redis客户端使用TCP协议与服务端进行交互,通信协议采用的是RESP。自己写程序监听端口,按照RESP协议规则解析数据,进行分析。缺点就是开发成本高,维护困难,有丢包可能性。

如何解决

目前业内的方案有两种
一 利用二级缓存
比如利用ehcache,或者一个HashMap都可以。在你发现热key以后,把热key加载到系统的JVM中。针对这种热key请求,会直接从jvm中取,而不会走到redis层。假设此时有十万个针对同一个key的请求过来,如果没有本地缓存,这十万个请求就直接怼到同一台redis上了。现在假设,你的应用层有50台机器,你也有jvm缓存了。这十万个请求平均分散开来,每个机器有2000个请求,会从JVM中取到value值,然后返回数据,避免了十万个请求怼到同一台redis上的情形。
二 备份热key
这个方案也很简单。不要让key走到同一台redis上不就行了。我们把这个key,在多个redis上都存一份不就好了。接下来,有热key请求进来的时候,我们就在有备份的redis上随机选取一台,进行访问取值,返回数据。
假设redis的集群数量为N,步骤如下所示。

image.png

注:不一定是2N,你想取3N,4N都可以,看要求。
伪代码如下

const M = N * 2
//生成随机数
random = GenRandom(0, M)
//构造备份新key
bakHotKey = hotKey + “_” + random
data = redis.GET(bakHotKey)
if data == NULL {
    data = GetFromDB()
    redis.SET(bakHotKey, expireTime + GenRandom(0,5))
}

业内方案

在项目运行过程中,自动发现热key,然后程序自动处理。主要有两步:
(1)监控热key
(2)通知系统做处理
透明多级缓存解决方案(TMC)
(1)监控热key
在监控热key方面,在客户端进行收集,TMC对原生jedis包的JedisPool和jedis类做了改造,在jedisPool初始化过程中集成TMC“热点发现”+“本地缓存”功能Hermes-SDK包的初始化逻辑。
也就说人家改写了jedis原生的jar包,加入了Hermes-SDK包。
Hermes-SDK包就是做热点发现和本地缓存。从监控的角度看,该包对于Jedis-Client的每次key值访问请求,Hermes-SDK都会通过其通信模块将key访问事件异步上报给Hermes服务端集群,以便其根据上报数据进行“热点探测”。
当然,这只是其中一种方式,有的公司在监控方面用的是方式五:自己抓包评估
具体是这么做的,利用flink搭建一套流式计算系统。然后自己写一个抓包程序抓redis监听端口的数据,抓到数据后往kafka里丢。接下来,流式计算系统消费kafka里的数据,进行数据统计即可,也能达到监控热key的目的。
(2)通知系统做处理
这个角度,用到的是上面的解决方案一:利用二级缓存进行处理。
在监控到热key后,Hermes服务端集群会通过各种手段通知各业务系统里的Hermes-SDK,告诉他们:“老弟,这个key是热key,记得做本地缓存”。
于是Hermes-SDK就会将key缓存在本地,对于后面的请求。Hermes-SDK发现这个是一个热key,直接从本地中拿,而不会去访问集群。
除了这种通知方式以外。我们也可以这么做,比如你的流式计算系统监控到热key了,往zookeeper里头的某个节点里写。然后你的业务系统监听该节点,发现节点数据变化了,就代表发现热key。最后往本地缓存里写,也是可以的。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,245评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,749评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,960评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,575评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,668评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,670评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,664评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,422评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,864评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,178评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,340评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,015评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,646评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,265评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,494评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,261评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,206评论 2 352

推荐阅读更多精彩内容