SQL必知必会(聚集函数&分组统计)

一、聚集函数都有哪些

SQL 中的聚集函数一共包括 5 个,可以帮我们求某列的最大值、最小值和平均值等,它们分别是:

如果我们想要查询最大生命值大于 6000 的英雄数量

SELECT COUNT(*) FROM heros WHERE hp_max > 6000;

查询最大生命值大于 6000,且有次要定位的英雄数量,需要使用 COUNT 函数

SELECT COUNT(role_assist) FROM heros WHERE hp_max > 6000;

需要说明的是,有些英雄没有次要定位,即 role_assist 为 NULL,这时COUNT(role_assist)会忽略值为 NULL 的数据行,而 COUNT(*) 只是统计数据行数,不管某个字段是否为 NULL

查询射手(主要定位或者次要定位是射手)的最大生命值的最大值是多少,需要使用 MAX 函数

SELECT MAX(hp_max) FROM heros WHERE role_main = '射手' or role_assist = '射手';

想要知道英雄的数量,我们使用的是 COUNT(*) 函数,求平均值、最大值、最小值,以及总的防御最大值,我们分别使用的是 AVG、MAX、MIN 和 SUM 函数。另外我们还需要对英雄的主要定位和次要定位进行筛选,使用的是WHERE role_main = '射手' or role_assist = '射手'

SELECT COUNT(*), AVG(hp_max), MAX(mp_max), MIN(attack_max), SUM(defense_max) FROM heros WHERE role_main = '射手' or role_assist = '射手';

需要说明的是 AVG、MAX、MIN 等聚集函数会自动忽略值为 NULL 的数据行,MAX 和 MIN 函数也可以用于字符串类型数据的统计,如果是英文字母,则按照 A—Z 的顺序排列,越往后,数值越大。如果是汉字则按照全拼拼音进行排列。比如:

SELECT MIN(CONVERT(name USING gbk)), MAX(CONVERT(name USING gbk)) FROM heros;

需要说明的是,我们需要先把 name 字段统一转化为 gbk 类型,使用CONVERT(name USING gbk),然后再使用 MIN 和 MAX 取最小值和最大值。

我们也可以对数据行中不同的取值进行聚集,先用 DISTINCT 函数取不同的数据,然后再使用聚集函数。比如我们想要查询不同的生命最大值的英雄数量是多少

SELECT COUNT(DISTINCT hp_max) FROM heros;

实际上在 heros 这个数据表中,一共有 69 个英雄数量,生命最大值不一样的英雄数量是 61 个

统计不同生命最大值英雄的平均生命最大值,保留小数点后两位。首先需要取不同生命最大值,即DISTINCT hp_max,然后针对它们取平均值,即AVG(DISTINCT hp_max),最后再针对这个值保留小数点两位,也就是ROUND(AVG(DISTINCT hp_max), 2)

SELECT ROUND(AVG(DISTINCT hp_max), 2) FROM heros;

二、对数据进行分组,并进行聚集统计

按照英雄的主要定位进行分组,并统计每组的英雄数量

SELECT COUNT(*), role_main FROM heros GROUP BY role_main;

对英雄按照次要定位进行分组,并统计每组英雄的数量

SELECT COUNT(*), role_assist FROM heros GROUP BY role_assist;

如果字段为 NULL,也会被列为一个分组。在这个查询统计中,次要定位为 NULL,即只有一个主要定位的英雄是 40 个

可以使用多个字段进行分组,这就相当于把这些字段可能出现的所有的取值情况都进行分组。比如,我们想要按照英雄的主要定位、次要定位进行分组,查看这些英雄的数量,并按照这些分组的英雄数量从高到低进行排序

SELECT COUNT(*) as num, role_main, role_assist FROM heros GROUP BY role_main, role_assist ORDER BY num DESC;

三、使用 HAVING 过滤分组,它与 WHERE 的区别是什么

当我们创建出很多分组的时候,有时候就需要对分组进行过滤。你可能首先会想到 WHERE 子句,实际上过滤分组我们使用的是 HAVING。HAVING 的作用和 WHERE 一样,都是起到过滤的作用,只不过 WHERE 是用于数据行,而 HAVING 则作用于分组

想要按照英雄的主要定位、次要定位进行分组,并且筛选分组中英雄数量大于 5 的组,最后按照分组中的英雄数量从高到低进行排序

SELECT COUNT(*) as num, role_main, role_assist FROM heros GROUP BY role_main, role_assist HAVING num > 5 ORDER BY num DESC;

筛选最大生命值大于 6000 的英雄,按照主要定位、次要定位进行分组,并且显示分组中英雄数量大于 5 的分组,按照数量从高到低进行排序

SELECT COUNT(*) as num, role_main, role_assist FROM heros WHERE hp_max > 6000 GROUP BY role_main, role_assist HAVING num > 5 ORDER BY num DESC;

这里我们就需要先使用 WHERE 子句对最大生命值大于 6000 的英雄进行条件过滤,然后再使用 GROUP BY 进行分组,使用 HAVING 进行分组的条件判断,然后使用 ORDER BY 进行排序

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,277评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,689评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,624评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,356评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,402评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,292评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,135评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,992评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,429评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,636评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,785评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,492评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,092评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,723评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,858评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,891评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,713评论 2 354

推荐阅读更多精彩内容