124 Binary Tree Maximum Path Sum 二叉树中的最大路径和
Description:
Given a non-empty binary tree, find the maximum path sum.
For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path must contain at least one node and does not need to go through the root.
Example:
Example 1:
Input: [1,2,3]
1
/ \
2 3
Output: 6
Example 2:
Input: [-10,9,20,null,null,15,7]
-10
/ \
9 20
/ \
15 7
Output: 42
题目描述:
给定一个非空二叉树,返回其最大路径和。
本题中,路径被定义为一条从树中任意节点出发,达到任意节点的序列。该路径至少包含一个节点,且不一定经过根节点。
示例 :
示例 1:
输入: [1,2,3]
1
/ \
2 3
输出: 6
示例 2:
输入: [-10,9,20,null,null,15,7]
-10
/ \
9 20
/ \
15 7
输出: 42
思路:
递归法
维护一个全局变量记录最大值
只考虑节点对最大值的正的贡献值
时间复杂度O(n), 空间复杂度O(1), 不考虑栈的空间
代码:
C++:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution
{
public:
int maxPathSum(TreeNode* root)
{
helper(root);
return result;
}
private:
int result = INT_MIN;
int helper(TreeNode* root)
{
if (!root) return 0;
int l = max(helper(root -> left), 0), r = max(helper(root -> right), 0);
result = max(root -> val + l + r, result);
return root -> val + max(l, r);
}
};
Java:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
private int result = Integer.MIN_VALUE;
public int maxPathSum(TreeNode root) {
helper(root);
return result;
}
private int helper(TreeNode root) {
if (root == null) return 0;
int l = helper(root.left), r = helper(root.right), v = root.val;
result = Math.max(result, v + l + r);
v += Math.max(l, r);
return Math.max(v, 0);
}
}
Python:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def maxPathSum(self, root: TreeNode, first=True) -> int:
if not root:
return 0
l, r = self.maxPathSum(root.left, False), self.maxPathSum(root.right, False)
self.result = max(getattr(self, 'result', float('-inf')), l + root.val + r)
return self.result if first else max(root.val + max(l, r), 0)