人工智能学习笔记二 —— 定义问题

有些问题之所以很困难有可能并不是问题本身很困难,而是自己没有把问题定义清楚。有时候把一个要解决的问题定义清楚问题本身就解决了一大半。这篇笔记是想通过一个简单的例子,介绍一下在人工智能或者机器学习领域中如何定义一个问题,顺便介绍一下解决这个问题的办法。


问题很简单,是一个导航问题,如图是罗马尼亚的地图,从Arad城市到Bucharest寻找最佳路径。

OK 把这个问题分解一下:

1、问题的初始状态是什么(Initial State)?

在Arad城市

2、行动(Action)是什么?

从一个状态(城市)移动到下一个状态(城市)。

3、结果(Result)呢?

状态变成在另一个城市了

4、这个状态是目标状态吗?需要测试一下(Goal test)。

是目的地Bucharest吗?是或不是

5、如何评价选择的路径(Path cost)?

路径的总里程

问题理解清楚了,接下来就是路径算法了,我们再把问题简化一下:


将问题想象成一个树枝(解决这个问题的办法跟之后介绍的“决策树”机器学习方法很像),初始地是头部,目的地是右下角。


怎么到达右下角最后一个目的地呢? 先介绍一种简单的算法,名字叫做“Breadth First” 故名思意就是“最短步数优先”。算法就会如图所示,先找只有需要走一步的城市(“2”和“3”),然后找需要走两步的(城市“4”,“5”,“6”,“7”).... 每走一步都会判断是否到达目的地,最后找到最佳路径1->3->7。

那如果找到了不止一条路呢?那算法就会将每个路径的总里程(Path cost)进行对比,选择路程最短的。“总里程”就是解决方案的评价标准

这种算法虽然简单,但是非常耗时,比如上图找了7个路径最终才找到最佳路径,如果分支很多计算量就会成倍增加。

另外一个比较“聪明的”的算法是“Cheapest First” ,这个算法首先要知道每个城市(状态)离目的地的直线距离(这个需要标注),当每走一步之后就会选择预测距离(已走距离+距目的地直线距离) 最短的城市。


比如上图所示,红色数字表示城市离目的地的距离。我们从城市“1”出发,按照“Cheapest First”原则,第一步将会到城市“2”因为“2”的预测距离(0+2=2)要比“4”的预测距离(0+5=5)大。第二步会选择走到“3”(预测距离 2+2 =4小于到“5”的预测距离)。这个算法两步就找到了最佳路径。

OK,如何定义问题和解决这个问题算法介绍完了,是不是很简单,你能分别利用上面介绍的两种算法在地图上找到从Arad城市到Bucharest的最短路径吗,能演示每一步怎么走的吗?

--------------

首发[steemit](https://links.jianshu.com/go?to=https%3A%2F%2Fsteemit.com%2F%40hongtao)

欢迎扫描二维码关注我的微信公众号“tensorflow机器学习”,一起学习,共同进步

![image](https://upload-images.jianshu.io/upload_images/10816620-67b5369ba3a3a00d.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/258/format/webp)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,992评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,212评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,535评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,197评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,310评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,383评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,409评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,191评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,621评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,910评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,084评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,763评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,403评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,083评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,318评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,946评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,967评论 2 351

推荐阅读更多精彩内容