版本记录
版本号 | 时间 |
---|---|
V1.0 | 2017.07.24 |
前言
OpenGL 图形库项目中一直也没用过,最近也想学着使用这个图形库,感觉还是很有意思,也就自然想着好好的总结一下,希望对大家能有所帮助。
1. OpenGL 图形库使用(一) —— 概念基础
2. OpenGL 图形库使用(二) —— 渲染模式、对象、扩展和状态机
创建窗口
在我们画出出色的效果之前,首先要做的就是创建一个OpenGL上下文(Context)
和一个用于显示的窗口
。然而,这些操作在每个系统上都是不一样的,OpenGL
有目的地从这些操作抽象(Abstract)
出去。这意味着我们不得不自己处理创建窗口,定义OpenGL上下文
以及处理用户输入。幸运的是,有一些库已经提供了我们所需的功能,其中一部分是特别针对OpenGL的。这些库节省了我们书写操作系统相关代码的时间,提供给我们一个窗口和上下文用来渲染。最流行的几个库有GLUT
,SDL
,SFML
和GLFW
。在教程里我们将使用GLFW
。
1. 构建GLFW
GLFW
是专门针对OpenGL的C语言库,它提供了一些渲染物体所需的最低限度的接口。它允许用户创建OpenGL上下文,定义窗口参数以及处理用户输入。
GLFW
可以从它官方网站的下载页上获取,从源代码编译库可以保证生成的库是兼容你的操作系统和CPU的。
2. 配置GLAD
OpenGL
只是一个标准/规范,具体的实现是由驱动开发商针对特定显卡实现的。由于OpenGL驱动版本众多,它大多数函数的位置都无法在编译时确定下来,需要在运行时查询。所以任务就落在了开发者身上,开发者需要在运行时获取函数地址并将其保存在一个函数指针中供以后使用。
// 定义函数原型
typedef void (*GL_GENBUFFERS) (GLsizei, GLuint*);
// 找到正确的函数并赋值给函数指针
GL_GENBUFFERS glGenBuffers = (GL_GENBUFFERS)wglGetProcAddress("glGenBuffers");
// 现在函数可以被正常调用了
GLuint buffer;
glGenBuffers(1, &buffer);
你可以看到代码非常复杂,使用有些库可以简化过程,其中GLAD
就是目前最新的。GLAD是一个开源的库,GLAD的配置与大多数的开源库有些许的不同,GLAD使用了一个在线服务。在这里我们能够告诉GLAD需要定义的OpenGL版本,并且根据这个版本加载所有相关的OpenGL函数。
着色器
着色器(Shader)
是运行在GPU
上的小程序。这些小程序为图形渲染管线的某个特定部分而运行。从基本意义上来说,着色器只是一种把输入转化为输出的程序。着色器也是一种非常独立的程序,因为它们之间不能相互通信;它们之间唯一的沟通只有通过输入和输出。
1. GLSL
着色器是使用一种叫GLSL
的类C
语言写成的。GLSL是为图形计算量身定制的,它包含一些针对向量和矩阵
操作的有用特性。着色器的开头总是要声明版本
,接着是输入和输出变量
、uniform和main函数
。每个着色器的入口点都是main函数,在这个函数中我们处理所有的输入变量,并将结果输出到输出变量中。
一般的着色器具有下面的结构。
//版本
#version version_number
//输入输出
in type in_variable_name;
in type in_variable_name;
out type out_variable_name;
//uniform
uniform type uniform_name;
//main函数
int main()
{
// 处理输入并进行一些图形操作
...
// 输出处理过的结果到输出变量
out_variable_name = weird_stuff_we_processed;
}
当我们特别谈论到顶点着色器的时候,每个输入变量也叫顶点属性(Vertex Attribute)
。我们能声明的顶点属性是有上限的,它一般由硬件来决定。OpenGL确保至少有16
个包含4
分量的顶点属性可用,但是有些硬件或许允许更多的顶点属性,你可以查询GL_MAX_VERTEX_ATTRIBS
来获取具体的上限。
unsigned int nrAttributes;
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &nrAttributes);
std::cout << "Maximum nr of vertex attributes supported: " << nrAttributes << std::endl;
上面函数的作用就是获取最多的顶点属性。
数据类型
和其他编程语言一样,GLSL
有数据类型可以来指定变量的种类。GLSL中包含C等其它语言大部分的默认基础数据类型:int
、float
、double
、uint
和bool
。GLSL也有两种容器类型,它们会在这个教程中使用很多,分别是向量(Vector)
和矩阵(Matrix)
。
1. 向量
GLSL中的向量是一个可以包含有1、2、3或者4个分量的容器,分量的类型可以是前面默认基础类型的任意一个。它们可以是下面的形式(n
代表分量的数量)。
一个向量的分量可以通过vec.x这种方式获取,这里x是指这个向量的第一个分量。你可以分别使用.x
、.y
、.z
和.w
来获取它们的第1
、2
、3
、4
个分量。GLSL
也允许你对颜色使用rgba
,或是对纹理坐标使用stpq
访问相同的分量。
向量这一数据类型也允许一些有趣而灵活的分量选择方式,叫做重组(Swizzling)
。重组允许这样的语法:
vec2 someVec;
vec4 differentVec = someVec.xyxx;
vec3 anotherVec = differentVec.zyw;
vec4 otherVec = someVec.xxxx + anotherVec.yxzy;
你可以使用上面4
个字母任意组合来创建一个和原来向量一样长的(同类型)新向量,只要原来向量有那些分量即可;然而,你不允许在一个vec2
向量中去获取.z
元素。我们也可以把一个向量作为一个参数传给不同的向量构造函数,以减少需求参数的数量:
vec2 vect = vec2(0.5, 0.7);
vec4 result = vec4(vect, 0.0, 0.0);
vec4 otherResult = vec4(result.xyz, 1.0);
向量是一种灵活的数据类型,我们可以把用在各种输入和输出上。
输入与输出
虽然着色器是各自独立的小程序,但是它们都是一个整体的一部分,出于这样的原因,我们希望每个着色器都有输入和输出,这样才能进行数据交流和传递。GLSL
定义了in
和out
关键字专门来实现这个目的。每个着色器使用这两个关键字设定输入和输出,只要一个输出变量与下一个着色器阶段的输入匹配,它就会传递下去。但在顶点
和片段着色器
中会有点不同。
顶点着色器应该接收的是一种特殊形式的输入,否则就会效率低下。顶点着色器的输入特殊在,它从顶点数据中直接接收输入。为了定义顶点数据该如何管理,我们使用location
这一元数据指定输入变量,这样我们才可以在CPU
上配置顶点属性。顶点着色器需要为它的输入提供一个额外的layout
标识,这样我们才能把它链接到顶点数据。
你也可以忽略layout (location = 0)
标识符,通过在OpenGL
代码中使用glGetAttribLocation
查询属性位置值(Location)
,但是我更喜欢在着色器中设置它们,这样会更容易理解而且节省你(和OpenGL)的工作量。
另一个例外是片段着色器,它需要一个vec4颜色输出变量,因为片段着色器需要生成一个最终输出的颜色。如果你在片段着色器没有定义输出颜色,OpenGL
会把你的物体渲染为黑色(或白色)。所以,如果我们打算从一个着色器向另一个着色器发送数据,我们必须在发送方着色器中声明一个输出,在接收方着色器中声明一个类似的输入。当类型和名字都一样的时候,OpenGL
就会把两个变量链接到一起,它们之间就能发送数据了(这是在链接程序对象时完成的)。
顶点着色器
#version 330 core
layout (location = 0) in vec3 aPos; // 位置变量的属性位置值为0
out vec4 vertexColor; // 为片段着色器指定一个颜色输出
void main()
{
gl_Position = vec4(aPos, 1.0); // 注意我们如何把一个vec3作为vec4的构造器的参数
vertexColor = vec4(0.5, 0.0, 0.0, 1.0); // 把输出变量设置为暗红色
}
片段着色器
#version 330 core
out vec4 FragColor;
in vec4 vertexColor; // 从顶点着色器传来的输入变量(名称相同、类型相同)
void main()
{
FragColor = vertexColor;
}
后记
这些都是我在中文学习网站上看到的,稍微整理了下,希望对大家有所帮助,具体地址前面我已经给出,谢谢这些技术大牛留下的精华。