手写Kmeans

kmeans.py

"""
手写kmeans
"""
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import make_blobs
import typing


class KMeans:
    def __init__(self, k: int):
        self.k = k
        self._centers = None

    def fit(self, nda: np.ndarray, n_iters=10, callback: typing.Callable = None):
        n_features = nda.shape[1]
        centers = self.random_centers(self.k, n_features)

        for i in range(n_iters):
            labels = self.assign(centers, nda)
            centers = self.update(nda, labels, self.k)
            if callback:
                callback(nda, labels, i)

    def predict(self, nda: np.ndarray):
        return self.assign(self.centers, nda)

    @property
    def centers(self):
        if not self._centers:
            raise AttributeError("Call 'fit' before reference to centers.")
        return self._centers

    @staticmethod
    def random_centers(k, n_features):
        return np.random.random((k, n_features))

    @staticmethod
    def assign(centers, nda):
        n = nda.shape[0]
        labels = np.empty(n)
        for i, arr in enumerate(nda):
            labels[i] = KMeans.nearest_center(centers, arr)
        return labels

    @staticmethod
    def update(nda, labels, k):
        centers = np.empty(k)
        for i in range(k):
            center = KMeans.cal_center(nda, labels, i)
            centers[i] = center
        return centers

    @staticmethod
    def distance(arr1, arr2):
        return np.sum((arr1 - arr2) ** 2)

    @staticmethod
    def cal_center(nda, labels, i):
        return np.mean(nda[labels == i])

    @staticmethod
    def nearest_center(centers, nda):
        j = -1
        min_dis = np.PINF
        for i, center in enumerate(centers):
            dis = KMeans.distance(center, nda)
            if dis < min_dis:
                min_dis = dis
                j = i
        return j


def my_plot(nda, labels, i):
    if i % 10 == 0:
        plt.scatter(nda[:, 0], nda[:, 1], c=labels)
        plt.title("i = %s" % i)
        plt.savefig("%s.png" % i)


def main():
    X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1, -1], [0, 0], [1, 1], [2, 2]],
                      cluster_std=[0.4, 0.2, 0.2, 0.2],
                      random_state=9)

    kmeans = KMeans(4)
    kmeans.fit(X, n_iters=40, callback=my_plot)


if __name__ == '__main__':
    main()

运行结果:

image

image

image

image
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 222,000评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,745评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,561评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,782评论 1 298
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,798评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,394评论 1 310
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,952评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,852评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,409评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,483评论 3 341
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,615评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,303评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,979评论 3 334
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,470评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,571评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,041评论 3 377
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,630评论 2 359

推荐阅读更多精彩内容