HDFS架构
•NameNode
•DataNode
•Sencondary NameNode
数据存储细节
NameNode 目录结构
Namenode的目录结构:
${dfs.name.dir}/current /VERSION
/edits
/fsimage
/fstime
dfs.name.dir是hdfs-site.xml里配置的若干个目录组成的列表。
NameNode
Namenode上保存着HDFS的名字空间。对于任何对文件系统元数据产生修改的操作,Namenode都会使用一种称为EditLog的事务日志记录下来。例如,在HDFS中创建一个文件,Namenode就会在Editlog中插入一条记录来表示;同样地,修改文件的副本系数也将往Editlog插入一条记录。Namenode在本地操作系统的文件系统中存储这个Editlog。整个文件系统的名字空间,包括数据块到文件的映射、文件的属性等,都存储在一个称为FsImage的文件中,这个文件也是放在Namenode所在的本地文件系统上。
Namenode在内存中保存着整个文件系统的名字空间和文件数据块映射(Blockmap)的映像。这个关键的元数据结构设计得很紧凑,因而一个有4G内存的Namenode足够支撑大量的文件和目录。当Namenode启动时,它从硬盘中读取Editlog和FsImage,将所有Editlog中的事务作用在内存中的FsImage上,并将这个新版本的FsImage从内存中保存到本地磁盘上,然后删除旧的Editlog,因为这个旧的Editlog的事务都已经作用在FsImage上了。这个过程称为一个检查点(checkpoint)。在当前实现中,检查点只发生在Namenode启动时,在不久的将来将实现支持周期性的检查点。
HDFS NameSpace
HDFS支持传统的层次型文件组织结构。用户或者应用程序可以创建目录,然后将文件保存在这些目录里。文件系统名字空间的层次结构和大多数现有的文件系统类似:用户可以创建、删除、移动或重命名文件。当前,HDFS不支持用户磁盘配额和访问权限控制,也不支持硬链接和软链接。但是HDFS架构并不妨碍实现这些特性。
Namenode负责维护文件系统命名空间,任何对文件系统名字空间或属性的修改都将被Namenode记录下来。应用程序可以设置HDFS保存的文件的副本数目。文件副本的数目称为文件的副本系数,这个信息也是由Namenode保存的。
DataNode
Datanode将HDFS数据以文件的形式存储在本地的文件系统中,它并不知道有关HDFS文件的信息。它把每个HDFS数据块存储在本地文件系统的一个单独的文件中。Datanode并不在同一个目录创建所有的文件,实际上,它用试探的方法来确定每个目录的最佳文件数目,并且在适当的时候创建子目录。在同一个目录中创建所有的本地文件并不是最优的选择,这是因为本地文件系统可能无法高效地在单个目录中支持大量的文件。
当一个Datanode启动时,它会扫描本地文件系统,产生一个这些本地文件对应的所有HDFS数据块的列表,然后作为报告发送到Namenode,这个报告就是块状态报告。
Secondary NameNode
Secondary NameNode定期合并fsimage和edits日志,将edits日志文件大小控制在一个限度下。
配置Secondary NameNode
• conf/masters文件指定的为Secondary NameNode节点
•修改在masters文件中配置了的机器上的conf/hdfs-site.xml文件,加上如下选项:
dfs.http.address namenode.hadoop-host.com:50070
•core-site.xml:这里有2个参数可配置,但一般来说我们不做修改。fs.checkpoint.period表示多长时间记录一次hdfs的镜像。默认是1小时。fs.checkpoint.size表示一次记录多大的size,默认64M。
fs.checkpoint.period 3600 The number of seconds between two periodic checkpoints.
fs.checkpoint.size 67108864 The size of the current edit log (in bytes) that triggers a periodic checkpoint even if the fs.checkpoint.period hasn't expired.
Secondary NameNode
Secondary NameNode处理流程
(1)、namenode响应Secondary namenode请求,将edit log推送给Secondary namenode,开始重新写一个新的edit log。
(2)、Secondary namenode收到来自namenode的fsimage文件和edit log。
(3)、Secondary namenode将fsimage加载到内存,应用edit log,并生成一个新的fsimage文件。
(4)、Secondary namenode将新的fsimage推送给Namenode。
(5)、Namenode用新的fsimage取代旧的fsimage,在fstime文件中记下检查点发生的时
HDFS通信协议
所有的HDFS通讯协议都是构建在TCP/IP协议上。客户端通过一个可配置的端口连接到Namenode,通过ClientProtocol与Namenode交互。而Datanode是使用DatanodeProtocol与Namenode交互。再设计上,DataNode通过周期性的向NameNode发送心跳和数据块来保持和NameNode的通信,数据块报告的信息包括数据块的属性,即数据块属于哪个文件,数据块ID,修改时间等,NameNode的DataNode和数据块的映射关系就是通过系统启动时DataNode的数据块报告建立的。从ClientProtocol和Datanodeprotocol抽象出一个远程调用(RPC),在设计上,Namenode不会主动发起RPC,而是是响应来自客户端和Datanode的RPC请求。
HDFS的安全模式
Namenode启动后会进入一个称为安全模式的特殊状态。处于安全模式的Namenode是不会进行数据块的复制的。Namenode从所有的Datanode接收心跳信号和块状态报告。块状态报告包括了某个Datanode所有的数据块列表。每个数据块都有一个指定的最小副本数。当Namenode检测确认某个数据块的副本数目达到这个最小值,那么该数据块就会被认为是副本安全(safely replicated)的;在一定百分比(这个参数可配置)的数据块被Namenode检测确认是安全之后(加上一个额外的30秒等待时间),Namenode将退出安全模式状态。接下来它会确定还有哪些数据块的副本没有达到指定数目,并将这些数据块复制到其他Datanode上。
第二部分:HDFS文件读取的解析
文件读取流程
流程分析
•使用HDFS提供的客户端开发库Client,向远程的Namenode发起RPC请求;
• Namenode会视情况返回文件的部分或者全部block列表,对于每个block,Namenode都会返回有该block拷贝的DataNode地址;
•客户端开发库Client会选取离客户端最接近的DataNode来读取block;如果客户端本身就是DataNode,那么将从本地直接获取数据.
•读取完当前block的数据后,关闭与当前的DataNode连接,并为读取下一个block寻找最佳的DataNode;
•当读完列表的block后,且文件读取还没有结束,客户端开发库会继续向Namenode获取下一批的block列表。
•读取完一个block都会进行checksum验证,如果读取datanode时出现错误,客户端会通知Namenode,然后再从下一个拥有该block拷贝的datanode继续读。
第三部分:HDFS文件写入的解析
文件写入流程
流程分析
•使用HDFS提供的客户端开发库Client,向远程的Namenode发起RPC请求;
•Namenode会检查要创建的文件是否已经存在,创建者是否有权限进行操作,成功则会为文件创建一个记录,否则会让客户端抛出异常;
•当客户端开始写入文件的时候,会将文件切分成多个packets,并在内部以数据队列"data queue"的形式管理这些packets,并向Namenode申请新的blocks,获取用来存储replicas的合适的datanodes列表,列表的大小根据在Namenode中对replication的设置而定。
•开始以pipeline(管道)的形式将packet写入所有的replicas中。把packet以流的方式写入第一个datanode,该datanode把该packet存储之后,再将其传递给在此pipeline中的下一个datanode,直到最后一个datanode,这种写数据的方式呈流水线的形式。
•最后一个datanode成功存储之后会返回一个ack packet,在pipeline里传递至客户端,在客户端的开发库内部维护着"ack queue",成功收到datanode返回的ack packet后会从"ack queue"移除相应的packet。
•如果传输过程中,有某个datanode出现了故障,那么当前的pipeline会被关闭,出现故障的datanode会从当前的pipeline中移除,剩余的block会继续剩下的datanode中继续以pipeline的形式传输,同时Namenode会分配一个新的datanode,保持replicas设定的数量。
流水线复制
当客户端向HDFS文件写入数据的时候,一开始是写到本地临时文件中。假设该文件的副本系数设置为3,当本地临时文件累积到一个数据块的大小时,客户端会从Namenode获取一个Datanode列表用于存放副本。然后客户端开始向第一个Datanode传输数据,第一个Datanode一小部分一小部分(4 KB)地接收数据,将每一部分写入本地仓库,并同时传输该部分到列表中第二个Datanode节点。第二个Datanode也是这样,一小部分一小部分地接收数据,写入本地仓库,并同时传给第三个Datanode。最后,第三个Datanode接收数据并存储在本地。因此,Datanode能流水线式地从前一个节点接收数据,并在同时转发给下一个节点,数据以流水线的方式从前一个Datanode复制到下一个
更细节的原理
客户端创建文件的请求其实并没有立即发送给Namenode,事实上,在刚开始阶段HDFS客户端会先将文件数据缓存到本地的一个临时文件。应用程序的写操作被透明地重定向到这个临时文件。当这个临时文件累积的数据量超过一个数据块的大小,客户端才会联系Namenode。Namenode将文件名插入文件系统的层次结构中,并且分配一个数据块给它。然后返回Datanode的标识符和目标数据块给客户端。接着客户端将这块数据从本地临时文件上传到指定的Datanode上。当文件关闭时,在临时文件中剩余的没有上传的数据也会传输到指定的Datanode上。然后客户端告诉Namenode文件已经关闭。此时Namenode才将文件创建操作提交到日志里进行存储。如果Namenode在文件关闭前宕机了,则该文件将丢失。
第四部分:副本机制
特点
1.数据类型单一
2.副本数比较多
3.写文件时副本的放置方法
4.动态的副本创建策略
5.弱化的副本一致性要求
副本摆放策略
修改副本数
1.集群只有三个Datanode,hadoop系统replication=4时,会出现什么情况?
对于上传文件到hdfs上时,当时hadoop的副本系数是几,这个文件的块数副本数就会有几份,无论以后你怎么更改系统副本系统,这个文件的副本数都不会改变,也就说上传到分布式系统上的文件副本数由当时的系统副本数决定,不会受replication的更改而变化,除非用命令来更改文件的副本数。因为dfs.replication实质上是client参数,在create文件时可以指定具体replication,属性dfs.replication是不指定具体replication时的采用默认备份数。文件上传后,备份数已定,修改dfs.replication是不会影响以前的文件的,也不会影响后面指定备份数的文件。只影响后面采用默认备份数的文件。但可以利用hadoop提供的命令后期改某文件的备份数:hadoop fs -setrep -R 1。如果你是在hdfs-site.xml设置了dfs.replication,这并一定就得了,因为你可能没把conf文件夹加入到你的 project的classpath里,你的程序运行时取的dfs.replication可能是hdfs-default.xml里的 dfs.replication,默认是3。可能这个就是造成你为什么dfs.replication老是3的原因。你可以试试在创建文件时,显式设定replication。replication一般到3就可以了,大了意义也不大。