A Comprehensive Survey on Graph Anomaly Detection with Deep Learning——前言

论文:A Comprehensive Survey on Graph Anomaly Detection with Deep Learning

论文地址:https://arxiv.org/abs/2106.07178

本文的写作动机

异常检测是一种数据挖掘过程,旨在识别偏离数据集中大多数数据的异常模式。在这一领域的早期工作中,检测方法在很大程度上依赖于手工制作的特征工程领域专家构建的统计模型。这内在地限制了这些技术检测未知异常的能力,而且是非常消耗人力的。

因此提出了利用中包含的结构信息,检测图中的异常在非欧几里德空间的异常检测问题-图异常检测(GAD,Graph Anomaly Detection),其目的是识别单个图中的异常图对象(即节点子图)以及图集/数据库中的异常图。通过提取表达性表示,将图形异常和正常对象分离,或者通过深度学习技术直接学习异常的偏差模式,图形异常检测与深度学习(GADL,Graph Anomaly detection with Deep Learning)开始在异常检测领域处于领先地位。

本文作者将 Graph Anomaly Detection 任务划分为了 4 个特定场景的任务:

  • Anomalous Node Detection (ANOS ND)
  • Anomalous Edge Detection (ANOS ED)
  • Anomalous Sub-graph Detection (ANOS SGD)
  • Anomalous Graph Detection (ANOS GD)

下图是作者整理出的相关论文发表的 TimeLine:


截屏2021-12-19 下午1.00.53.png

Graph Anomaly Detection(GAD) 的四个技术挑战及七个数据挑战

技术挑战

  1. Anomaly-aware training objectives 异常感知训练目标:如何通过训练有效地将异常对象分离
  2. Anomaly interpretability 异常解释能力:如何很好的解释所检测出的异常
  3. High training cost 高额的训练代价:如何平衡效果和代价
  4. Hyper parameter tuning 超参数调整:如何调整超参

数据挑战

  1. 有标记样本很少
  2. 不同类型的图
  3. 不同类的图异常
  4. 数据的高维度和大尺度
  5. 不同实体间的关系以及其动态变化
  6. 样本不平衡
  7. 异常的未知性和伪装性

不同图的基本定义

平面图

截屏2021-12-19 下午1.27.39.png

属性图

截屏2021-12-19 下午1.27.48.png

动态图

截屏2021-12-19 下午1.27.57.png

图数据库

截屏2021-12-19 下午1.28.20.png

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容