【Zookeeper系列】基本介绍

在学习一样技术之前,咱们需要先想一下,为什么需要学这一门技术?

许多分布式系统都是基于ZK作为底层核心组件对外提供服务,比如Kafka中,将Broker注册到ZK中,此时ZK充当着多重角色,比如注册中心、选举等;再比如说,我公司目前很多项目都是Dubbo,都是需要基于ZK实现服务发现和注册。

另外,ZK内其实也有很多优秀的算法和设计思想,熟悉ZK源码,也可以提升自己的“内功”。

如何快速入门Zookeeper呢?最简单的方式就是直接看 Zookeeper官网 啦!建议读者多参考官方文档和博客内容一起食用,效果更佳噢~

Zookeeper是什么?

字面上意思可以认为是“动物园管理员”!为什么会有这一个名字呢?先来看下 Hadoop 的生态系统图
HADOOP-ECOSYSTEM-Edureka.png

Zookeeper的 Logo 看起来就像个“铲屎官”,服务动物园内的动物们。

“A Distributed Coordination Service for Distributed Applications”,这是摘取官方的解释,我们可以得知Zookeeper 是一个为分布式框架提供协调服务的东东。

举些例子,有哪些分布式框架使用Zookeeper:

  • Kafka(最新版本中其实去掉ZK作为注册中心)

  • Hbase

  • Dubbo

  • HDFS

  • 等等

Zookeeper的常用使用场景有哪些?

  • 分布式锁

  • 注册中心

  • Leader选举

ZK的作用不止上面几个,其实还可以做到负载均衡、统一配置、分布式队列等,但使用场景相对少,企业级系统中,会使用其他更加专业的框架组件。

分布式锁、注册中心、Leader选举将会是ZK系列中,重点分享的内容,敬请期待哈~

重点概念

在ZK中,需要先了解一些专业名词的概念,但不会一下子都列出来,当之后遇到的时候,再重点分析...

1. ZK角色

在ZK集群中,会分为LeaderFollowerObserver角色。

Leader作为集群的大佬,承担写请求和部分读请求;Follower作为Leader的小弟,将会承担部分读请求,当接收到写请求的时候会转发给Leader,由Leader处理写请求;Observer就有点特殊,Observer节点不参与选举和消息过半机制,这个不清楚的读者可以暂时有个记忆就行,之后遇到会重点说明。

ZK集群处理读写请求概览.png

2. 节点类型

  • 持久节点(PERSISTENT)

  • 持久顺序节点(PERSISTENT_SEQUENTIAL)

  • 临时节点(EPHEMERAL)

  • 顺序临时节点(EPHEMERAL_SEQUENTIAL)

实际上,节点只分为持久节点和临时节点,但有些场景需要保证顺序,所以就会在持久或临时节点的基础上,添加序号(递增的方式),形成持久顺序节点和临时顺序节点。</br> 那么什么是持久节点,什么是临时节点呢?最直观的一个现象就是,每个ZK客户端连接ZK集群后,都会产生一个节点,如果ZK客户端下线后,节点还存在的就是持久节点,若ZK客户端下线后节点也随着消失,那么该节点就是临时节点。

3. 监听回调

在ZK客户端启动前,可以自定义监听回调函数,这个有什么作用呢?客户端启动后会将监听事件发送给Zookeeper集群,Zookeeper集群中有一个用于记录监听事件的列表,当客户端监听的目录节点发生变化,如节点数据变更、节点增删等,就会通过ZK集群的监听列表,找到对应的客户端回调监听函数,那么客户端这边就可以根据业务场景,做出相应的动作。

4. ZAB协议

ZAB协议的全称是:ZooKeeper Atomic Broadcast。ZAB是Zookeeper保证数据一致性的核心算法。借鉴了Paxos算法的思想,特地为Zookeeper设计的支持崩溃恢复的原子广播协议。其包括两种基本模式:消息广播崩溃恢复

消息广播指的是,集群中只有一个Leader处理写请求,并将写请求的事件广播给所有Follower,且能够保证数据不丢失。(也就是说,消息的写入是原子性的,因为只能有leader写入)

崩溃恢复指的是,当ZK集群刚启动还没选举出Leader或Leader因故障、重启、网络等原因的时候,ZAB协议会进入崩溃恢复模式,其目的就是为了选举新的Leader,且保证新Leader的数据是最新的,这样就能够避免因为Leader故障而导致单点丢失消息的情况,至于ZAB具体的原理,各位可以先看下以下参考文章,后续有机会我再专门写一篇关于 ZAB 协议的文章~

ZAB 协议参考文章

Zookeeper架构特点

数据模型

ZK内的数据模型结构和Unix文件系统非常相似,是一个有层级关系的树形数据结构。在ZK内,树形的数据结构使用称为ZNode节点保存数据,ZNode是ZK中数据结构最小单元,不仅能够保存数据,还能挂载子节点,形成一个有层次关系的树。

值得注意的是,ZNode的创建是纯内存操作的,所以速度很快,然后在ZK内部会定期将ZNode的数据持久化到磁盘上。

数据模型.png

集群部署

众所周知,在实际的企业应用,面对高并发的场景下,肯定是不能单节点部署,而是通过集群部署保证高并发、高性能、高可用(简称三高)。

高性能:由于ZNode节点是纯内存操作,只要ZK部署在高配置的服务器中,三台ZK服务器抗住每秒几万的请求都是没问题的。 高可用:只要部署奇数的服务器集群(比如3台、5台、11台机器),只要不超过一半的服务器宕机,都能保证ZK集群可用。 高并发:因为ZNode是纯内存操作,所以在写数据的时候,速度是很快;而ZK集群中Leader和Follower节点都能处理读请求,所以ZK集群高并发能力是很强的。

顺序一致性

基于ZAB协议,写请求统一由Leader服务器处理,然后由Leader将写数据的请求广播给其他Follower。

但会不会由于种种原因,如网络波动、Leader脑裂、Follower宕机等,导致消息不一致?

实际上,在ZK中采用2PC两阶段提交的思想,结合ZAB消息广播保证数据一致性。值得注意的是,Zookeeper只能保证最终一致性,并不能保证强一致性

那么具体是怎么保证数据最终一致性的呢?感兴趣的读者可以看下我另外一篇拙作【TODO...】

参考资料:

《从Paxos到Zookeeper分布式一致性原理与实践》

如果觉得文章不错的话,麻烦点个赞哈,你的鼓励就是我的动力!对于文章有哪里不清楚或者有误的地方,欢迎在评论区留言~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,125评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,293评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,054评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,077评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,096评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,062评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,988评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,817评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,266评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,486评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,646评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,375评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,974评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,621评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,642评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,538评论 2 352

推荐阅读更多精彩内容