Pandas中时间和日期处理

1、生成一个时间段

In [1]:import pandas as pd
In [2]:import numpy as np
#1、生成一个时间区间段,间隔为小时
In [3]:rng = pd.date_range('1/1/2011', periods=72, freq='H')
#2、生成一个Series,并制定索引为时间段
In [4]:ts = pd.Series(np.random.randn(len(rng)), index=rng)
In [5]:ts
Out[5]: 
2011-01-01 00:00:00   -0.204085
2011-01-01 01:00:00    1.101711
2011-01-01 02:00:00    1.840500
2011-01-01 03:00:00    0.112426
2011-01-01 04:00:00   -0.310413
2011-01-01 05:00:00    1.180762
2011-01-01 06:00:00    0.087775
2011-01-01 07:00:00    1.087877
2011-01-01 08:00:00   -0.950237
2011-01-01 09:00:00   -0.468453
Freq: H, dtype: float64

#3、改变时间间隔
In [6]:converted = ts.asfreq('45Min', method='pad')
In [7]:converted
Out[7]: 
2011-01-01 00:00:00   -0.204085
2011-01-01 00:45:00   -0.204085
2011-01-01 01:30:00    1.101711
2011-01-01 02:15:00    1.840500
2011-01-01 03:00:00    0.112426
2011-01-01 03:45:00    0.112426
2011-01-01 04:30:00   -0.310413
2011-01-01 05:15:00    1.180762
2011-01-01 06:00:00    0.087775
2011-01-01 06:45:00    0.087775
2011-01-01 07:30:00    1.087877
2011-01-01 08:15:00   -0.950237
2011-01-01 09:00:00   -0.468453
Freq: 45T, dtype: float64

2、转华为日期格式

2.1 数字生成日期格式

In [8]: pd.Timestamp(datetime(2012, 5, 1))
Out[8]: Timestamp('2012-05-01 00:00:00')

2.2 字符生成日期格式

In [9]: pd.Timestamp('2012-05-01')
Out[9]: Timestamp('2012-05-01 00:00:00')

2.3 只有年月

In [10]: pd.Period('2011-01')
Out[10]: Period('2011-01', 'M')

In [11]: pd.Period('2012-05', freq='D')
Out[11]: Period('2012-05-01', 'D')

2.4 转化为日期格式

In [22]: pd.to_datetime(pd.Series(['Jul 31, 2009', '2010-01-10', None]))
Out[22]: 
0   2009-07-31
1   2010-01-10
2          NaT
dtype: datetime64[ns]

In [23]: pd.to_datetime(['2005/11/23', '2010.12.31'])
Out[23]: DatetimeIndex(['2005-11-23', '2010-12-31'], dtype='datetime64[ns]', freq=None)

3、生成一个时间段

3.1 生成索引的方法

In [35]: dates = [datetime(2012, 5, 1), datetime(2012, 5, 2), datetime(2012, 5, 3)]

# Note the frequency information
In [36]: index = pd.DatetimeIndex(dates)

In [37]: index
Out[37]: DatetimeIndex(['2012-05-01', '2012-05-02', '2012-05-03'], dtype='datetime64[ns]', freq=None)

# Automatically converted to DatetimeIndex
In [38]: index = pd.Index(dates)

In [39]: index
Out[39]: DatetimeIndex(['2012-05-01', '2012-05-02', '2012-05-03'], dtype='datetime64[ns]', freq=None)


# date_range日历,bdate_range工作日
In [40]: index = pd.date_range('2000-1-1', periods=1000, freq='M')

In [41]: index
Out[41]: 
DatetimeIndex(['2000-01-31', '2000-02-29', '2000-03-31', '2000-04-30',
               '2000-05-31', '2000-06-30', '2000-07-31', '2000-08-31',
               '2000-09-30', '2000-10-31',
               ...
               '2082-07-31', '2082-08-31', '2082-09-30', '2082-10-31',
               '2082-11-30', '2082-12-31', '2083-01-31', '2083-02-28',
               '2083-03-31', '2083-04-30'],
              dtype='datetime64[ns]', length=1000, freq='M')

In [42]: index = pd.bdate_range('2012-1-1', periods=250)

In [43]: index
Out[43]: 
DatetimeIndex(['2012-01-02', '2012-01-03', '2012-01-04', '2012-01-05',
               '2012-01-06', '2012-01-09', '2012-01-10', '2012-01-11',
               '2012-01-12', '2012-01-13',
               ...
               '2012-12-03', '2012-12-04', '2012-12-05', '2012-12-06',
               '2012-12-07', '2012-12-10', '2012-12-11', '2012-12-12',
               '2012-12-13', '2012-12-14'],
              dtype='datetime64[ns]', length=250, freq='B')


In [44]: start = datetime(2011, 1, 1)

In [45]: end = datetime(2012, 1, 1)

In [46]: rng = pd.date_range(start, end)

In [47]: rng
Out[47]: 
DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04',
               '2011-01-05', '2011-01-06', '2011-01-07', '2011-01-08',
               '2011-01-09', '2011-01-10',
               ...
               '2011-12-23', '2011-12-24', '2011-12-25', '2011-12-26',
               '2011-12-27', '2011-12-28', '2011-12-29', '2011-12-30',
               '2011-12-31', '2012-01-01'],
              dtype='datetime64[ns]', length=366, freq='D')

In [48]: rng = pd.bdate_range(start, end)

In [49]: rng
Out[49]: 
DatetimeIndex(['2011-01-03', '2011-01-04', '2011-01-05', '2011-01-06',
               '2011-01-07', '2011-01-10', '2011-01-11', '2011-01-12',
               '2011-01-13', '2011-01-14',
               ...
               '2011-12-19', '2011-12-20', '2011-12-21', '2011-12-22',
               '2011-12-23', '2011-12-26', '2011-12-27', '2011-12-28',
               '2011-12-29', '2011-12-30'],
              dtype='datetime64[ns]', length=260, freq='B')

3.2 每个月末,每隔一周

In [50]: pd.date_range(start, end, freq='BM')
Out[50]: 
DatetimeIndex(['2011-01-31', '2011-02-28', '2011-03-31', '2011-04-29',
               '2011-05-31', '2011-06-30', '2011-07-29', '2011-08-31',
               '2011-09-30', '2011-10-31', '2011-11-30', '2011-12-30'],
              dtype='datetime64[ns]', freq='BM')

In [51]: pd.date_range(start, end, freq='W')
Out[51]: 
DatetimeIndex(['2011-01-02', '2011-01-09', '2011-01-16', '2011-01-23',
               '2011-01-30', '2011-02-06', '2011-02-13', '2011-02-20',
               '2011-02-27', '2011-03-06', '2011-03-13', '2011-03-20',
               '2011-03-27', '2011-04-03', '2011-04-10', '2011-04-17',
               '2011-04-24', '2011-05-01', '2011-05-08', '2011-05-15',
               '2011-05-22', '2011-05-29', '2011-06-05', '2011-06-12',
               '2011-06-19', '2011-06-26', '2011-07-03', '2011-07-10',
               '2011-07-17', '2011-07-24', '2011-07-31', '2011-08-07',
               '2011-08-14', '2011-08-21', '2011-08-28', '2011-09-04',
               '2011-09-11', '2011-09-18', '2011-09-25', '2011-10-02',
               '2011-10-09', '2011-10-16', '2011-10-23', '2011-10-30',
               '2011-11-06', '2011-11-13', '2011-11-20', '2011-11-27',
               '2011-12-04', '2011-12-11', '2011-12-18', '2011-12-25',
               '2012-01-01'],
              dtype='datetime64[ns]', freq='W-SUN')

3.3 从End往前数20个工作日,从start往后数20个工作日

In [52]: pd.bdate_range(end=end, periods=20)
Out[52]: 
DatetimeIndex(['2011-12-05', '2011-12-06', '2011-12-07', '2011-12-08',
               '2011-12-09', '2011-12-12', '2011-12-13', '2011-12-14',
               '2011-12-15', '2011-12-16', '2011-12-19', '2011-12-20',
               '2011-12-21', '2011-12-22', '2011-12-23', '2011-12-26',
               '2011-12-27', '2011-12-28', '2011-12-29', '2011-12-30'],
              dtype='datetime64[ns]', freq='B')

In [53]: pd.bdate_range(start=start, periods=20)
Out[53]: 
DatetimeIndex(['2011-01-03', '2011-01-04', '2011-01-05', '2011-01-06',
               '2011-01-07', '2011-01-10', '2011-01-11', '2011-01-12',
               '2011-01-13', '2011-01-14', '2011-01-17', '2011-01-18',
               '2011-01-19', '2011-01-20', '2011-01-21', '2011-01-24',
               '2011-01-25', '2011-01-26', '2011-01-27', '2011-01-28'],
              dtype='datetime64[ns]', freq='B')

4、根据部分索引选择,切片

In [56]: rng = pd.date_range(start, end, freq='BM')

In [57]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [58]: ts.index
Out[58]: 
DatetimeIndex(['2011-01-31', '2011-02-28', '2011-03-31', '2011-04-29',
               '2011-05-31', '2011-06-30', '2011-07-29', '2011-08-31',
               '2011-09-30', '2011-10-31', '2011-11-30', '2011-12-30'],
              dtype='datetime64[ns]', freq='BM')

In [59]: ts[:5].index
Out[59]: 
DatetimeIndex(['2011-01-31', '2011-02-28', '2011-03-31', '2011-04-29',
               '2011-05-31'],
              dtype='datetime64[ns]', freq='BM')

In [60]: ts[::2].index
Out[60]: 
DatetimeIndex(['2011-01-31', '2011-03-31', '2011-05-31', '2011-07-29',
               '2011-09-30', '2011-11-30'],
              dtype='datetime64[ns]', freq='2BM')

In [61]: ts['1/31/2011']
Out[61]: -1.2812473076599531

In [62]: ts[pd.datetime(2011, 12, 25):]
Out[62]: 
2011-12-30    0.687738
Freq: BM, dtype: float64

In [63]: ts['10/31/2011':'12/31/2011']
Out[63]: 
2011-10-31    0.149748
2011-11-30   -0.732339
2011-12-30    0.687738
Freq: BM, dtype: float64

In [64]: ts['2011']
Out[64]: 
2011-01-31   -1.281247
2011-02-28   -0.727707
2011-03-31   -0.121306
2011-04-29   -0.097883
2011-05-31    0.695775
2011-06-30    0.341734
2011-07-29    0.959726
2011-08-31   -1.110336
2011-09-30   -0.619976
2011-10-31    0.149748
2011-11-30   -0.732339
2011-12-30    0.687738
Freq: BM, dtype: float64

In [65]: ts['2011-6']
Out[65]: 
2011-06-30    0.341734
Freq: BM, dtype: float64


# DataFrame中指定了时间索引,可以根据时间索引提取子集
In [66]: dft = pd.DataFrame(np.random.randn(100000,1),columns=['A'],index=pd.date_range('20130101',periods=100000,freq='T'))


In [67]: dft
Out[67]: 
                            A
2013-01-01 00:00:00  0.176444
2013-01-01 00:01:00  0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00  0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
...                       ...
2013-03-11 10:33:00 -0.293083
2013-03-11 10:34:00 -0.059881
2013-03-11 10:35:00  1.252450
2013-03-11 10:36:00  0.046611
2013-03-11 10:37:00  0.059478
2013-03-11 10:38:00 -0.286539
2013-03-11 10:39:00  0.841669

[100000 rows x 1 columns]

In [68]: dft['2013']
Out[68]: 
                            A
2013-01-01 00:00:00  0.176444
2013-01-01 00:01:00  0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00  0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
...                       ...
2013-03-11 10:33:00 -0.293083
2013-03-11 10:34:00 -0.059881
2013-03-11 10:35:00  1.252450
2013-03-11 10:36:00  0.046611
2013-03-11 10:37:00  0.059478
2013-03-11 10:38:00 -0.286539
2013-03-11 10:39:00  0.841669

[100000 rows x 1 columns]


In [69]: dft['2013-1':'2013-2']
Out[69]: 
                            A
2013-01-01 00:00:00  0.176444
2013-01-01 00:01:00  0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00  0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
...                       ...
2013-02-28 23:53:00  0.103114
2013-02-28 23:54:00 -1.303422
2013-02-28 23:55:00  0.451943
2013-02-28 23:56:00  0.220534
2013-02-28 23:57:00 -1.624220
2013-02-28 23:58:00  0.093915
2013-02-28 23:59:00 -1.087454

[84960 rows x 1 columns]


In [70]: dft['2013-1':'2013-2-28']
Out[70]: 
                            A
2013-01-01 00:00:00  0.176444
2013-01-01 00:01:00  0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00  0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
...                       ...
2013-02-28 23:53:00  0.103114
2013-02-28 23:54:00 -1.303422
2013-02-28 23:55:00  0.451943
2013-02-28 23:56:00  0.220534
2013-02-28 23:57:00 -1.624220
2013-02-28 23:58:00  0.093915
2013-02-28 23:59:00 -1.087454

[84960 rows x 1 columns]


In [71]: dft['2013-1':'2013-2-28 00:00:00']
Out[71]: 
                            A
2013-01-01 00:00:00  0.176444
2013-01-01 00:01:00  0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00  0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
...                       ...
2013-02-27 23:54:00  0.897051
2013-02-27 23:55:00 -0.309230
2013-02-27 23:56:00  1.944713
2013-02-27 23:57:00  0.369265
2013-02-27 23:58:00  0.053071
2013-02-27 23:59:00 -0.019734
2013-02-28 00:00:00  1.388189

[83521 rows x 1 columns]


In [72]: dft['2013-1-15':'2013-1-15 12:30:00']
Out[72]: 
                            A
2013-01-15 00:00:00  0.501288
2013-01-15 00:01:00 -0.605198
2013-01-15 00:02:00  0.215146
2013-01-15 00:03:00  0.924732
2013-01-15 00:04:00 -2.228519
2013-01-15 00:05:00  1.517331
2013-01-15 00:06:00 -1.188774
...                       ...
2013-01-15 12:24:00  1.358314
2013-01-15 12:25:00 -0.737727
2013-01-15 12:26:00  1.838323
2013-01-15 12:27:00 -0.774090
2013-01-15 12:28:00  0.622261
2013-01-15 12:29:00 -0.631649
2013-01-15 12:30:00  0.193284

[751 rows x 1 columns]


In [73]: dft.loc['2013-1-15 12:30:00']
Out[73]: 
A    0.193284
Name: 2013-01-15 12:30:00, dtype: float64

6、常用时间

类别 解释
year
month
day
hour
minute 分钟
second
microsecond 微秒
nanosecond 纳秒
date 返回日期
time 返回时间
dayofyear 年序日
weekofyear 年序周
week
dayofweek 周中的第几天,Monday=0, Sunday=6
weekday 周中的第几天,Monday=0, Sunday=6
weekday_name 周中的星期几,ex: Friday
quarter 季度
days_in_month 一个月中有多少天
is_month_start 是否月初第一天
is_month_end 是否月末最后一天
is_quarter_start 是否季度的最开始
is_quarter_end 是否季度的最后一个
is_year_start 是否年初第一天
is_year_end 是否年末第一天

7、某一时间点,往前往后加一段时间

类别 解释
BDay 工作日
CDay 自定义日期
Week
WeekOfMonth 月中的第几周
LastWeekOfMonth 月中的最后一周
MonthEnd 日历上月末
MonthBegin 日历上月初
BMonthEnd 工作月初
BMonthBegin 月开始营业
CBMonthEnd 自定义月末
CBMonthBegin 自定义月初
QuarterEnd 日历季末
QuarterBegin 日历季初
BQuarterEnd 工作季末
BQuarterBegin 工作季初
FY5253Quarter retail (aka 52-53 week) quarter
YearEnd 日历年末
YearBegin 日历年初
BYearEnd 工作年末
BYearBegin 工作年初
FY5253 retail (aka 52-53 week) year
BusinessHour 工作小时
CustomBusinessHour 自定义小时
Hour 小时
Minute 分钟
Second
In [84]: d = pd.datetime(2008, 8, 18, 9, 0)
In [86]: from pandas.tseries.offsets import *

In [87]: d + DateOffset(months=4, days=5)
Out[87]: Timestamp('2008-12-23 09:00:00')


In [88]: d - 5 * BDay()
Out[88]: Timestamp('2008-08-11 09:00:00')

# 月末
In [89]: d + BMonthEnd()
Out[89]: Timestamp('2008-08-29 09:00:00')


In [90]: d
Out[90]: datetime.datetime(2008, 8, 18, 9, 0)

# 往前数月末
In [91]: offset = BMonthEnd()

In [92]: offset.rollforward(d)
Out[92]: Timestamp('2008-08-29 09:00:00')

# 往后数月末
In [93]: offset.rollback(d)
Out[93]: Timestamp('2008-07-31 09:00:00')


# 时间方面的
In [94]: day = Day()

In [95]: day.apply(pd.Timestamp('2014-01-01 09:00'))
Out[95]: Timestamp('2014-01-02 09:00:00')

In [96]: day = Day(normalize=True)

In [97]: day.apply(pd.Timestamp('2014-01-01 09:00'))
Out[97]: Timestamp('2014-01-02 00:00:00')

In [98]: hour = Hour()

In [99]: hour.apply(pd.Timestamp('2014-01-01 22:00'))
Out[99]: Timestamp('2014-01-01 23:00:00')

In [100]: hour = Hour(normalize=True)

In [101]: hour.apply(pd.Timestamp('2014-01-01 22:00'))
Out[101]: Timestamp('2014-01-01 00:00:00')

In [102]: hour.apply(pd.Timestamp('2014-01-01 23:00'))
Out[102]: Timestamp('2014-01-02 00:00:00')


# 周相关的
In [103]: d
Out[103]: datetime.datetime(2008, 8, 18, 9, 0)

In [104]: d + Week()
Out[104]: Timestamp('2008-08-25 09:00:00')

In [105]: d + Week(weekday=4)
Out[105]: Timestamp('2008-08-22 09:00:00')

In [106]: (d + Week(weekday=4)).weekday()
Out[106]: 4

In [107]: d - Week()
Out[107]: Timestamp('2008-08-11 09:00:00')

8、时间序列相关的时间处理

In [213]: ts = ts[:5]

In [214]: ts.shift(1)
Out[214]: 
2011-01-31         NaN
2011-02-28   -1.281247
2011-03-31   -0.727707
2011-04-29   -0.121306
2011-05-31   -0.097883
Freq: BM, dtype: float64


In [215]: ts.shift(5, freq=datetools.bday)
Out[215]: 
2011-02-07   -1.281247
2011-03-07   -0.727707
2011-04-07   -0.121306
2011-05-06   -0.097883
2011-06-07    0.695775
dtype: float64

In [216]: ts.shift(5, freq='BM')
Out[216]: 
2011-06-30   -1.281247
2011-07-29   -0.727707
2011-08-31   -0.121306
2011-09-30   -0.097883
2011-10-31    0.695775
Freq: BM, dtype: float64


In [217]: ts.tshift(5, freq='D')
Out[217]: 
2011-02-05   -1.281247
2011-03-05   -0.727707
2011-04-05   -0.121306
2011-05-04   -0.097883
2011-06-05    0.695775
dtype: float64

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容