02 matplotlib - 柱状图、直方图、散点图 、饼图

=== 头文件 ===

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
# 解决中文显示问题
import matplotlib as mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = False
# inline 在行内显示
%matplotlib inline 

=== 柱状图 ===

1、创建数据
2、设置坐标轴中文参数,代替数字 plt.xticks(num,stu)
3、设置每组柱状图的个数(有几个轴)
4、设置刻度 plt.ylim(0,100) 0~100分 plt.xlim(0,7) 6个学生
5、绘制柱状图 plt.bar 颜色、对其方式align、位置调整num-2*w
# x轴: 学生信息
stu=np.array(["张三","李四","王五","赵六","钱七","周八"])
num = np.arange(1,7) #学号
# x轴刻度: 注释掉为学号,放开为姓名
plt.xticks(num,stu)

# y轴: 两门成绩
score_chinese=np.random.randint(0,100,6)
score_maths=np.random.randint(0,100,6)
score_english=np.random.randint(0,100,6)
# 每组数据多少个轴(语文、数学两个轴)
#n=2
n=3
w=0.8/n

# 设置y轴刻度
plt.ylim(0,100)
plt.xlim(0,7)


# 图像对齐方式align: 居中center 左对齐edge


# 双数个轴用 edge
#plt.bar(num-w,score_chinese,label='语文',color='green',width=w,align='edge')
#plt.bar(num,score_maths,label='数学',color='blue',width=w,align='edge')
# plt.bar(num+w,score_english,label='英语',color='red',width=w,align='center')

# 单数个轴用center
plt.bar(num,score_chinese,label='语文',color='green',width=w,align='center')
plt.bar(num-w,score_maths,label='数学',color='blue',width=w,align='center')
plt.bar(num+w,score_english,label='英语',color='red',width=w,align='center')

plt.legend(loc='upper left')
偶数个轴
奇数个轴
scores = pd.read_csv('../Pandas_module/student_info1.csv',header=1,names=['Chinese','Math','English'])
scores = scores.fillna(0)
scores
plt.bar(scores.index.values,scores['Chinese'])

=== 直方图 ===

直方图(Histogram)又称质量分布图。是一种统计报告图,由一系列高度不等的纵向条纹或线段表示数据分布的情况。 一般用横轴表示数据类型,纵轴表示分布情况。

# 随机生成一组正态分布的数据
x=np.random.randn(1000)

# 用直方图表示这组数据
# plt(x,bins,weight)
# x: 数据
# bins: 多少个条状图
# weights: x的数据,对每一组的贡献(倍数) #得和我们的数据大小相同 #加上weight后,x的数据会乘以10体现在y轴刻度上
# bottom: 底部从多少开始,y轴刻度最低为10
# orientation= 'horizontal' 横向显示
w=np.random.randint(10,11,1000)
plt.hist(x,50,weights=w,bottom=100)
plt.show()

=== 散点图 ===

# 散点图 scatter
# x身高 y体重
x=np.array([150,151,154,156,185,185,176,175,178,178,190,198,174])
y=np.array([45,45,46,47,70,76,65,64,67,65,68,67,87])

# 看哪个分布段的身高和体重最多
plt.scatter(x,y)
plt.show()

=== 饼图 ===

# plt.pie()
month=['1月','2月','3月']
counts=[1300,1600,5000]
# 以逆时针来绘制
# startangle 开始绘制的角度
# explode 把饼取出来一点
# shadow 阴影
# autopct="%.1f%%" 显示百分比
# radius=0.8大小缩小到80%

explodes=[0.2,0,0]
plt.pie(counts,labels=month,startangle=90,explode=explodes
        ,shadow=True,autopct="%.1f%%",radius=0.8)
plt.show()
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351

推荐阅读更多精彩内容