数据结构与算法-动态规划

动态规划

不知道大家有没有听说这样的说法

​ 贪心:一条路走到黑,就一次机会,只能哪边看着顺眼走哪边;
​ 回溯:一条路走到黑,无数次重来的机会,还怕我走不出来;
​ 动态规划:拥有上帝视角,手握无数平行宇宙的历史存档, 同时发展出无数个未来;

因此动态规划是一种很好用的算法。

经典的动态规划问题:0-1背包、0-1背包升级版、青蛙跳变态版、棋盘的最小路径等。

什么时候可以用动态规划?

虽然说有一个模型三个特征,但个人还是通过一个流程来判断是否可以使用动态规划。

【注】一个模型:多阶段决策最优解模型

​ 三个特征:最优子结构、无后效性和重复子问题

个人总结流程

我们假设背包的最大承载重量是 9。我们有 5 个不同的物品,每个物品的重量分别是 2,2,4,6,3。在满足背包最大重量限制的前提下,背包中物品总重量的最大值是多少?

看问题判断:

  1. 找最优解
  2. 是否多阶段

画递归树:

0-1背包问题递归树
  1. 从第一个阶段开始(根节点),观察有多少种决策可以选择。
  2. 从第二个阶段开始(子树),从观察有多少种决策可以选择。
  3. 好,停。这时候你就大概会有一种感觉,就是”重复“。

如上图是0-1背包问题的递归树,递归树中的每个节点表示一种状态,我们用(i, cw)来表示。其中,i 表示将要决策第几个物品是否装入背包,cw 表示当前背包中物品的总重量。

PS.图参考自王争《数据结构与算法之美》

画状态转移表:

  1. 先画二维的状态转移表;(这里行列数代表的意义要明确)
  2. 手工填一部分状态转移表;
  3. 找到状态转移的规律;
  4. 总结出状态转移状态方程;
image
状态转移表

代码实现

weight: 物品重量,n: 物品个数,w: 背包可承载重量
public int knapsack(int[] weight, int n, int w) {
  boolean[][] states = new boolean[n][w+1]; // 默认值 false
  states[0][0] = true;  // 第一行的数据要特殊处理,可以利用哨兵优化
  states[0][weight[0]] = true;
  for (int i = 1; i < n; ++i) { // 动态规划状态转移
    for (int j = 0; j <= w; ++j) {// 不把第 i 个物品放入背包
      if (states[i-1][j] == true) states[i][j] = states[i-1][j];
    }
    for (int j = 0; j <= w-weight[i]; ++j) {// 把第 i 个物品放入背包
      if (states[i-1][j]==true) states[i][j+weight[i]] = true;
    }
  }
  for (int i = w; i >= 0; --i) { // 输出结果
    if (states[n-1][i] == true) return i;
  }
  return 0;
}

多写多练,就能有自己的一套方法和技巧。

推荐从0-1背包和青蛙跳变态版开始练。

补充

还有的动态规划问题,是从多个“方向”而来。

如棋盘的最短路径问题:

假设我们有一个 n 乘以 n 的矩阵 w。矩阵存储的都是正整数。棋子起始位置在右下角。我们将棋子从左上角移动到右下角。每次只能向右或者向下移动一位。从左上角到右下角,会有很多不同的路径可以走。我们把每条路径经过的数字加起来看作路径的长度。那从左上角移动到右下角的最短路径长度是多少呢?

棋盘

那么他就会从两个方向来,只有可能从 (i, j-1) 或者 (i-1, j) 来。

img

因此状态转移表变成下图

状态转移表
img

我的动态规划之路还有很多要学,大家一起进步!

参考资料

数据结构与算法之美 https://time.geekbang.org/column/article/75702

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容