五个有用的心理学效应

一、马太效应

《新约·马太福音》中有这样一个故事,一个国王远行前,交给三个仆人每人一锭银子,吩咐他们:“你们去做生意,等我回来时,再来见我。”国王回来时,第一个仆人说:“主人,你交给我们的一锭银子,我已赚了10锭。”于是国王奖励他10座城邑。第二个仆人报告说:“主人,你给我的一锭银子,我已赚了5锭。”于是国王例奖励了他5座城邑。第三个仆人报告说:“主人,你给我的一锭银子,我一直包在手巾里存着,我怕丢失,一直没有拿出来。”于是国王命令将第三个仆人的一锭银子也赏给第一个仆人,并且说:“凡是少的,就连他所有的也要夺过来。凡是多的,还要给他,叫他多多益善。”这就是马太效应。

看看我们周围,就可以发现许多马太效应的例子。朋友多的人会借助频繁的交往得到更多的朋友;缺少朋友的人会一直孤独下去。金钱方面更是如此,即使投资回报率相同,一个比别人投资多10倍的人,收益也多10倍。

这是个赢家通吃的社会,善用马太效应,赢家就是你。

马太效应告诉我们:要想在某一个领域保持优势,就必须在此领域迅速做大。当你成为某个领域的领头羊的时候,即使投资回报率相同,你也能更轻易的获得比弱小的同行更大的收益。而若没有实力迅速在某个领域做大,就要不停地寻找新的发展领域,才能保证获得较好的回报。

二、手表定理

手表定理是指一个人有一只表时,可以知道现在是几点钟,而当他同时拥有两只表时却无法确定。两只表并不能告诉一个人更准确的时间,反而会让看表的人失去对准确时间的信心。你要做的就是选择其中较信赖的一只,尽力校准它,并以此作为你的标准,听从它的指引行事。

如果每个人都“选择你所爱,爱你所选择”,无论成败都可以心安理得。然而,困扰很多人的是:他们被“两只表”弄得无所,心身交瘁,不知自己该信仰哪一个,还有人在环境、他人的压力下,违心选择了自己并不喜欢的道路,为此而郁郁终生,即使取得了受人瞩目的成就,也体会不到成功的快乐。

手表定理在企业经营管理方面给我们一种非常直观的启发,就是对同一个人或同一个组织的管理不能同时采用两种不同的方法,不能同时设置两个不同的目标。甚至每一个人不能由两个人来同时指挥,否则将使这个企业或这个人无所适从。

手表定理所指的另一层含义在于每个人都不能同时挑选两种不同的价值观,否则,你的行为将陷于混乱。

三、不值得定律

不值得定律最直观的表述是:不值得做的事情,就不值得做好,这个定律似乎再简单不过了,但它的重要性却时时被人们疏忘。不值得定律反映出人们的一种心理,一个人如果从事的是一份自认为不值得做的工作,往往会保持冷嘲热讽,敷衍了事的态度。不仅成功率小,而且即使成功,也不会觉得有多大的成就感。

值得做的工作是:符合我们的价值观,适合我们的个性与气质,并能让我们看到期望。如果你的工作不具备这三个因素,你就要考虑换一个更合适的工作,并努力做好它。

因此,对个人来说,应在多种可供选择的奋斗目标及价值观中挑选一种,然后为之而奋斗。“选择你所爱的,爱你所选择的”,才可能激发我们的奋斗毅力,也才可以心安理得。

四、彼得原理

彼得原理是美国学者劳伦斯·彼得在对组织中人员晋升的相关现象研究后得出的一个结论;在各种组织中,由于习惯于对在某个等级上称职的人员进行晋升提拔,因而雇员总是趋向于晋升到其不称职的地位。彼得原理有时也被称为“向上爬”原理。

这种现象在现实生活中无处不在:一名称职的教授被提升为大学校长后无法胜任;一个优秀的运动员被提升为主管体育的官员,而无所作为。

对个人而言,虽然我们每个人都期待着不停地升职,但不要将往上爬作为自己的惟一动力。与其在一个无法完全胜任的岗位勉力支撑、无所适从,还不如找一个自己能游刃有余的岗位好好发挥自己的专长。

对一个组织而言,一旦组织中的相当部分人员被推到了其不称职的级别,就会造成组织的人浮于事,效率低下,导致平庸者出人头地,发展停滞。

因此,这就要求改变单纯的“根据贡献决定晋升”的企业员工晋升机制,不能因某个人在某一个岗位级别上干得很出色,就推断此人一定能够胜任更高一级的职务。

要建立科学、合理的人员选聘机制,客观评价每一位职工的能力和水准,将职工安排到其可以胜任的岗位。不要把岗位晋升当成对职工的主要奖励方式,应建立更有效的奖励机制,更多地以加薪、休假等方式作为奖励手段。

五、零和游戏原理

当你看到两位对弈者时,你就可以说他们正在玩“零和游戏”。因为在大多数情况下,总会有一个赢,一个输,如果我们把获胜计算为得1分,而输棋为-1分,那吗,这两人得分之和就是:1+(-1)=0。

这正是“零和游戏”的基本内容:游戏者有输有赢,一方所赢正是另一方所输,游戏的总成绩永远是零。

零和游戏原理之所以广受关注,主要是因为人们发现在社会的方方面面都能发现与“零和游戏”类似的局面,胜利者的光荣后面往往隐藏着失败者的辛酸和苦涩。

从个人到国家,从到经济,似乎无不验证了世界正是一个巨大的“零和游戏”场。这种理论认为,世界是一个封闭的系统,财富、资源、机遇都是有限的,个别人、个别地区和个别国家财富的增加必然意味着对其他人、其他地区和国家的掠夺,这是一个“邪恶进化论”式的弱肉强食的世界。

但20世纪人类在经历了两次世界大战,经济的高速增长、科技进步、全球化以及日益严重的环境污染之后,“零和游戏”观念正逐渐被“双赢”观念所取代。人们开始认识到“利己”不一定要建立在“损人”的基础上。通过有效合作,皆大欢喜的结局是可能出现的。

但从“零和游戏”走向“双赢”,要求各方要有真诚合作的精神和勇气,在合作中不要耍小聪明,不要总想占别人的小便宜,要遵守游戏规则,否则“双赢”的局面就不可能出现,最终吃亏的还是自己。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,047评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,807评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,501评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,839评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,951评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,117评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,188评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,929评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,372评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,679评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,837评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,536评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,168评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,886评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,129评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,665评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,739评论 2 351

推荐阅读更多精彩内容

  • 生活人生搞笑爱情 效应大全:78种效应大全 效应大全 本文话题:效应大全 心理学家 知识就是力量 成功经验 ...
    我等蓬蒿阅读 1,096评论 0 6
  • 1 彼得原理 每个组织都是由各种不同的职位、等级或阶层的排列所组成,每个人都隶属于其中的某个等级。彼得原理是美国学...
    小声讲故事阅读 267评论 0 0
  • 纤弱牵牛草,寻径徐徐爬。 夜绿无殊色,晨开向阳花。
    阿赖耶识矣阅读 321评论 0 0
  • 一个小型的组织,最早的以亲缘、血缘、业缘联结比如店铺,商行。 一个较大的组织,最早的以地缘联结比如我们熟知的晋商,...
    钟独阅读 255评论 0 0
  • 每个孩子的心里,都可能有一个邻家孩子的阴影。 这个邻居家的孩子,总会在某些方面特别“出色”,而且,常常莫名其妙地出...
    一声笑阅读 541评论 0 0