特征选择的方法

Filter

Filter这类方法是选定一个指标来评估特征,根据指标值来对特征排序,去掉达不到足够分数的特征。这类方法只考虑特征和目标之间的关联,相对另两类特征选择方法Wrapper和Embedded计算开销最少。指标的选择对Filter方法至关重要,下面我们就看几种被大家通常使用的指标。

统计的视角:

相关系数(Correlation)。统计课本里都讲过的皮尔森相关系数是最常用的方法。需要注意的是当样本数很少或者特征的取值范围更广时,更容易得出绝对值更大的皮尔森系数,所以样本量不同或者取值范围不同的特征的之间相关系数不一定可以做比较。另外皮尔森相关系数只能衡量线性相关性,随机变量和不相关并不意味二者独立。当相关系数为0时我们知道的是线性分类器不能单利用这个特征的目前的形态做到将不同的类分开,但通过特征本身的变换、和其它特征组合使用或者与其它特征结合出新的特征却可能让它焕发出生机发挥出价值。
假设检验(Hypothesis Testing)。将特征和目标之间独立作为H0假设,选择检验方法计算统计量,然后根据统计量确定值做出统计推断。
信息论的视角:

互信息(Mutual Information):,函数表示信息(负熵),函数 表示概率。
信息增益(Information Gain):。
最小描述长度(Minimum Description Length)。

Wrapper

Wrapper方法和Filter不同,它不单看特征和目标直接的关联性,而是从添加这个特征后模型最终的表现来评估特征的好坏。Wrapper方法需要选定一种评估模型效果的指标,如Area Under the Curve (AUC)、Mean Absolute Error (MAE)、Mean Squared Error(MSE)。假设我们有个特征,除去空集外这个特征可以组成个集合,最暴力的方法是分别用个特征集合训练得到模型做评估,最后选择模型效果最好的集合。显而易见当很大时穷举法计算开销惊人。所以前向特征选择(Forward Feature Selection)和后向特征选择(Backward Feature Selection)这样的贪心策略更为大家平常所用。前向特征选择从空集开始,每次在现有特征集合的基础上添加一个让模型效果最好的特征。相反,后向特征选择一开始包括所有的候选特征,每次去掉一个让模型指标提升最多的特征。

离线评估结果是重要的参考指标,但在实际应用中,往往最终还是通过线上A/B Test实验来判断一个特征的效果。在实际应用中离线评估不错的特征在线上表现不一定就好,线上线下评估的一致性和影响因素是另一个可以值得研究的问题。

Embedded

Filter方法和Wrapper方法都是和分类算法本身的实现无关,可以与各种算法结合使用。而Embedded特征选择方法与算法本身紧密结合,在模型训练过程中完成特征的选择。例如:决策树算法每次都优先选择分类能力最强的特征;逻辑回归算法的优化目标函数在log likelihood的基础上加上对权重的L1或者L2等罚项后也会让信号弱的特征权重很小甚至为0。

一些优化算法天然就适合在每步判断一个维度特征的好坏,所以可以在学习器在设计时就同时融合了特征选择功能,在训练过程中自动尝试构造特征和选择特征。

小结

Filter、Wrapper、Embedded三种方法各有不同,但没有孰好孰坏之分,在我们的实际工作中会结合使用。Filter作为简单快速的特征检验方法,可以指导特征的预处理和特征的初选。Embedded特征选择是我们学习器本身所具备的能力。通过Wrapper来离线和在线评估是否增加一个特征。

原文:http://www.flickering.cn/ads/2014/08/%E8%BD%AC%E5%8C%96%E7%8E%87%E9%A2%84%E4%BC%B0-4%E7%89%B9%E5%BE%81%E9%80%89%E6%8B%A9%EF%BC%8D%E7%AE%80%E4%BB%8B/

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,919评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,567评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,316评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,294评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,318评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,245评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,120评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,964评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,376评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,592评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,764评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,460评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,070评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,697评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,846评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,819评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,665评论 2 354