cufflinks使用-2 (2018-05-29)

更多请了解Cufflinks:  http://cole-trapnell-lab.github.io/cufflinks/

图片来自上面的网址,cufflink workflow

Cufflinks 利用Tophat比对的结果(alignments)来组装转录本,估计这些转录本的丰度,并且检测样本间的差异表达及可变剪接

这个软件其实是个套装,包括四个部分分别命名为:cufflinks、cuffcompare、cuffmerge及cuffdiff.

流程:

第一步,利用tophat/bowtie比对结果(bam格式)及参考基因组构建转录本,最终的转录本是以gtf格式保存的。

第二步,Cuffcompare主要是对两个或多个转录本集合中转录本相似情况的比较,例如将第一步构建出的转录本与ENSEMBL数据库中的转录本进行比较,评估转录本构建情况,此外,根据构建的转录本与已知ENSEMBL数据库中的转录本的相对位置定义了一系列分类,例如内含子区域、反义、基因间区域转录本等等近10种分类。

第三步,cuffmerge是将多个转录本集合合并成一套转录本集合,例如将在多个组织样本中构建的多套转录本合并成一套转录本,cuffmerge能够很好地完成去除冗余。

第四步,cuffdiff衡量两个或多个样本间差异表达的基因,例如癌症与正常组织间差异表达的转录本,此外还能衡量差异可变剪接体。

至此,转录本测序常规数据分析基本结束,接下来进行实验验证或深入数据分析。

具体实例:

Mapping完了以后,cufflinks就可以把map到基因组里的序列组装成一个转录组了,这个转录组理论上包含了所有当时细胞里的所有mRNA,组装好的转录组包含了可能的剪切信息和所有转录的表达量,这个表达量是根据map到基因组的序列的总数和每个转录片断的长度进行归一化的,听起来比较难懂,它是对于在转录片断里的每一千个碱基对,在每一百万个成功map的序列中,map在这一千个碱基对上的序列的比例,

fragments per kilobase of transcript per million mapped fragments (FKPM)。

参考生信菜鸟团:http://www.bio-info-trainee.com/166.html

详细使用参照:http://blog.sina.com.cn/s/blog_751bd9440102v72b.html

[   Cufflinks输出结果

cufflinks的输入文件是sam或bam格式。并且sam或bam格式的文件必须排好序。(The SAM file supplied to Cufflinksmustbe sorted by          reference position.)Tophat的输出结果sam或bam已经排好了序。针对其他的未排序的sam或bam文件采用如下排序方式:

sort -k 3,3 -k 4,4n hits.sam > hits.sam.sorted

1. transcripts.gtf

该文件包含Cufflinks的组装结果isoforms。前7列为标准的GTF格式,最后一列为attributes。其每一列的意义:

列数  列的名称  例子        描述

1    序列名    chrX        染色体或contig名; 2    来源      Cufflinks  产生该文件的程序名; 3    类型      exon        记录的类型,一般是transcript或exon; 4    起始      1          1-base的值; 5    结束      1000        结束位置; 6    得分      1000        ; 7    链        +          Cufflinks猜测isoform来自参考序列的那一条链,一般是'+','-'或'.';8    frame    .          Cufflinks不去预测起始或终止密码子框的位置; 9    attributes  ...      详见下

每一个GTF记录包含如下attributes:

Attribute      例子      描述

gene_idCUFF.1Cufflinks的gene id;transcript_idCUFF.1.1  Cufflinks的转录子 id; FPKM          101.267  isoform水平上的丰度,FragmentsPerKilobase of exon model perMillion mapped fragments; frac          0.7647    保留着的一项,忽略即可,以后可能会取消这个;conf_lo        0.07      isoform丰度的95%置信区间的下边界,即 下边界值 = FPKM * ( 1.0 - conf_lo );conf_hi        0.1102    isoform丰度的95%置信区间的上边界,即 上边界值 = FPKM * ( 1.0 + conf_hi ); cov            100.765 计算整个transcript上read的覆盖度;full_read_support  yes  当使用 RABT assembly 时,该选项报告所有的introns和exons是否完全被reads所覆盖

2. ispforms.fpkm_tracking

isoforms(可以理解为gene的各个外显子)的fpkm计算结果

3. genes.fpkm_tracking

gene的fpkm计算结果Cuffmerge简介

Cuffmerge将各个Cufflinks生成的transcripts.gtf文件融合称为一个更加全面的transcripts注释结果文件merged.gtf。以利于用Cuffdiff来分析基因差异表达。

2. 使用方法

$ cuffmerge [options]*

输入文件为一个文本文件,是包含着GTF文件路径的list。常用例子:

$ cuffmerge -o ./merged_asm -p 8 assembly_list.txt

3. 使用参数

-h | --help

-o  default: ./merged_asm

将结果输出至该文件夹。

-g | --ref-gtf将该reference GTF一起融合到最终结果中。

-p | --num-threads  defautl: 1

使用的CPU线程数

-s | --ref-sequence /该参数指向基因组DNA序列。如果是一个文件夹,则每个contig则是一个fasta文件;如果是一个fasta文件,则所有的contigs都需要在里面。Cuffmerge将使用该ref-sequence来帮助对transfrags分类,并排除repeats。比如transcripts包含一些小写碱基的将归类到repeats.  ]

4. Cuffmerge输出结果

输出的结果文件默认为 /merged.gtf

<1>命令:cufflinks -p 4 -o test_cuff /home/andengdi/lyr/rna-seq/02-align_out/test_output/accepted_hits.bam

流程及结果

5  为了得到匹配到的序列,将gif文件中的序列提取出来。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351

推荐阅读更多精彩内容

  • 首先可以把自己的公众号二维码发到朋友圈让自己的好友帮自己宣传。然后公众号的内容要能给用户带来价值,可以多发一些自己...
    化身逗比阅读 371评论 0 0
  • 从100分到98分,挨一顿揍;从55分到61分,得一个吻。这看似荒诞不经的故事,却常常发生在我们身边,许多人看来,...
    hsjwjsjg阅读 220评论 0 0
  • 本文所有Demo地址:https://github.com/iOSaFei/MVC-MVVM-ReactiveCo...
    iOS_aFei阅读 677评论 0 7
  • 世界上最健康的生活方式!(建议保存) 2017-04-17 河北华林集团酸碱平官网 1.生活 : ① 少食肉;② ...
    妙手_e126阅读 164评论 0 0
  • 文/Zoe 来上海一个月零两天,在事务所上班也有24天了。起初的五天,每天面试至少三家公司,在上海的各条地铁上来回...
    苦笑嫣然阅读 498评论 3 6