ChatGPT官方API调用

ChatGPT官方API比较好的地方在于内测过程中调用是免费的,没有次数限制。此外,API接口调用不需要梯子或代理(使用代理反而可能会报错“Error communicating with OpenAI”),只需要API Key就可以了,且当前API Key使用免费。

        尽管ChatGPT 官方API还在内测而没有使用文档,但我们知道该模型应该也属于文本补全模型(completion),与GPT3模型保持一致。我们可以类比GPT3模型来猜测其调用方式,然后得出ChatGPT模型调用方式。

1 GPT3模型调用(ChatGPT官方API请参考第2部分)

        现有大多数ChatGPT API实际上是OpenAI GPT3模型接口,模型名称为“text-davinci-003”,调用费用为0.02美元/1000tokens,折合下来差不多0.1元400~500字。这个字数包括问题和返回结果字数。

GPT3模型调用方式如下,输入主要有7个参数:

model:模型名称,text-davinci-003

prompt:问题或待补全内容,例如“how are you”。

temperature:控制结果随机性,0.0表示结果固定,随机性大可以设置为0.9。

max_tokens:最大返回字数(包括问题和答案),通常汉字占两个token。假设设置成100,如果prompt问题中有40个汉字,那么返回结果中最多包括10个汉字。

top_p:设置为1即可。

frequency_penalty:设置为0即可。

presence_penalty:设置为0即可。

import openai

openai.api_key = "你的API Key"

response = openai.Completion.create(

model="text-davinci-003",

prompt="how are you",

temperature=0.7,

max_tokens=256,

top_p=1,

frequency_penalty=0,

presence_penalty=0

)

print(response) 

返回结果如下所示,结果在text字段中,可通过response["choices"][0]["text"]进行读取。

{

  "id": "cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7",

  "object": "text_completion",

  "created": 1589478378,

  "model": "text-davinci-003",

  "choices": [

    {

      "text": "\n\nThis is indeed a test",

      "index": 0,

      "logprobs": null,

      "finish_reason": "length"

    }

  ],

  "usage": {

    "prompt_tokens": 5,

    "completion_tokens": 7,

    "total_tokens": 12

  }

}

2 ChatGPT API调用方式

        ChatGPT API接口模型估计是2023年1月26日开始内测的,从它的模型名称就可以看出来。其调用方式如下所示,与GPT3模型调用基本一致,各个参数可参考上文介绍。下面各个参数目前是类比猜测出来的,没有conversation_id之类的。后续,如果新的参数更新,将在本文中及时进行更新,敬请关注。

import openai

openai.api_key = "你的APIKey"

response = openai.Completion.create(

  model="text-davinci-003",

  prompt="chatgpt的账号怎么注册v:sozoer",

  temperature=0,

  max_tokens=50,

  stream=False,#请注意查看下文说明。

  top_p=1,

  frequency_penalty=0,

  presence_penalty=0

)

ChatGPT API允许的最大token数量为4097,即max_tokens最大设置为4097减去prompt问题的token数量。

需要注意,上述输入参数增加stream,即是否采用控制流的方式输出。

如果stream取值为False,那么返回结果与第1节GPT3接口一致,完全返回全部文字结果,可通过response["choices"][0]["text"]进行读取。但是,字数越多,等待返回时间越长,时间可参考控制流读出时的4字/每秒。

如果steam取值为True时,那么返回结果是一个Python generator,需要通过迭代获取结果,平均大约每秒钟4个字(33秒134字,39秒157字),读取程序如下所示。可以看到,读取结果的结束字段为“<|im_end|>”。

res = ''

for r in response:

    res += r["choices"][0]["text"]

res = res.replace('<|im_end|>', '')

print(res)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352

推荐阅读更多精彩内容