交叉熵

作者:Noriko Oshima

链接:https://www.zhihu.com/question/41252833/answer/108777563

来源:知乎

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

熵的本质是香农信息量(

)的期望。

现有关于样本集的2个概率分布p和q,其中p为真实分布,q非真实分布。按照真实分布p来衡量识别一个样本的所需要的编码长度的期望(即平均编码长度)为:H(p)=

。如果使用错误分布q来表示来自真实分布p的平均编码长度,则应该是:H(p,q)=

。因为用q来编码的样本来自分布p,所以期望H(p,q)中概率是p(i)。H(p,q)我们称之为“交叉熵”。

比如含有4个字母(A,B,C,D)的数据集中,真实分布p=(1/2, 1/2, 0, 0),即A和B出现的概率均为1/2,C和D出现的概率都为0。计算H(p)为1,即只需要1位编码即可识别A和B。如果使用分布Q=(1/4, 1/4, 1/4, 1/4)来编码则得到H(p,q)=2,即需要2位编码来识别A和B(当然还有C和D,尽管C和D并不会出现,因为真实分布p中C和D出现的概率为0,这里就钦定概率为0的事件不会发生啦)。

可以看到上例中根据非真实分布q得到的平均编码长度H(p,q)大于根据真实分布p得到的平均编码长度H(p)。事实上,根据Gibbs' inequality可知,H(p,q)>=H(p)恒成立,当q为真实分布p时取等号。我们将由q得到的平均编码长度比由p得到的平均编码长度多出的bit数称为“相对熵”:D(p||q)=H(p,q)-H(p)=

,其又被称为KL散度(Kullback–Leibler divergence,KLD)Kullback–Leibler divergence。它表示2个函数或概率分布的差异性:差异越大则相对熵越大,差异越小则相对熵越小,特别地,若2者相同则熵为0。注意,KL散度的非对称性。

比如TD-IDF算法就可以理解为相对熵的应用:词频在整个语料库的分布与词频在具体文档中分布之间的差异性。

交叉熵可在神经网络(机器学习)中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量p与q的相似性。交叉熵作为损失函数还有一个好处是使用sigmoid函数在梯度下降时能避免均方误差损失函数学习速率降低的问题,因为学习速率可以被输出的误差所控制。

PS:通常“相对熵”也可称为“交叉熵”,因为真实分布p是固定的,D(p||q)由H(p,q)决定。当然也有特殊情况,彼时2者须区别对待。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

  • 香农熵 熵考察(香农熵)的是单个的信息(分布)的期望:反映了一个系统的无序化(有序化)程度,一个系统越有序,信息熵...
    Arya鑫阅读 10,363评论 0 6
  • 交叉熵产生于信息论里面的信息压缩编码技术,但是它后来演变成为从博弈论到机器学习等其他领域里的重要技术手段。 1.什...
    CJJShare阅读 5,248评论 0 2
  • 1 信息熵 信息熵代表的是随机变量或整个系统的不确定性,熵越大,随机变量或系统的不确定性就越大。 1.1 举例 题...
    0过把火0阅读 4,359评论 0 0
  • 熵的定义本质上是香浓信息量log(1/p)的期望。 信息熵 编码方案完美时,最短平均编码的长度 交叉熵 编码方案不...
    Goet阅读 3,544评论 0 2
  • 一条信息的不确定性由它出现概率的负对数函数来表示。一方面负对数函数在数值上概率输入的单调递减函数,比如输入为1时值...
    an0nym0us阅读 3,916评论 0 0

友情链接更多精彩内容