Panada——数据框DataFrame

DataFrame是一个类似表格的数据结构,索引包括列索引和行索引,包含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。DataFrame的每一行和每一列都是一个Series,这个Series的name属性为当前的行索引名/列索引名。

使用字典生成DataFrame

#使用字典生成DataFrame
from pandas import DataFrame
data = DataFrame({'state':['ok', 'ok', 'good', 'bad'],
        'year':[2000, 2001, 2002, 2003],
        'pop':[3.7, 3.6, 2.4, 0.9]})
print (data )# 行索引index默认为0,1,2,3 
  state  year  pop
0    ok  2000  3.7
1    ok  2001  3.6
2  good  2002  2.4
3   bad  2003  0.9
#指定列索引columns,不匹配的列为NaN
print (DataFrame(data, columns = ['year', 'state', 'pop','debt']))
   year state  pop debt
0  2000    ok  3.7  NaN
1  2001    ok  3.6  NaN
2  2002  good  2.4  NaN
3  2003   bad  0.9  NaN
#指定行索引index
x = DataFrame(data,
                    columns = ['year', 'state', 'pop', 'debt'],
                    index = ['one', 'two', 'three', 'four'])
print(x)
       year state  pop debt
one    2000    ok  3.7  NaN
two    2001    ok  3.6  NaN
three  2002  good  2.4  NaN
four   2003   bad  0.9  NaN
#按列访问
print(DataFrame(data)['state'])
0      ok
1      ok
2    good
3     bad
Name: state, dtype: object

DataFrame元素的索引与修改

#原数据框
       year state  pop debt
one    2000    ok  3.7  NaN
two    2001    ok  3.6  NaN
three  2002  good  2.4  NaN
four   2003   bad  0.9  NaN

import numpy
print(x['state'])
one        ok
two        ok
three    good
four      bad
Name: state, dtype: object
# 修改一整列数据
x['debt'] = 16.5
print(x)
       year state  pop  debt
one    2000    ok  3.7  16.5
two    2001    ok  3.6  16.5
three  2002  good  2.4  16.5
four   2003   bad  0.9  16.5
# 用numpy数组修改元素
x.debt = numpy.arange(4)
print(x)
       year state  pop  debt
one    2000    ok  3.7     0
two    2001    ok  3.6     1
three  2002  good  2.4     2
four   2003   bad  0.9     3
#用Series修改元素,没有指定的默认数据用NaN
val = Series([-1.2, -1.5, -1.7,0], index = ['one', 'two', 'five','six']) 
x.debt = val # DataFrame的行索引不变
print(x)
       year state  pop  debt
one    2000    ok  3.7  -1.2
two    2001    ok  3.6  -1.5
three  2002  good  2.4   NaN
four   2003   bad  0.9   NaN

#增加一行
x.loc[len(x)]=[2,3,4,5]
print(x)
       year state  pop  debt
one    2000    ok  3.7  -1.2
two    2001    ok  3.6  -1.5
three  2002  good  2.4   NaN
four   2003   bad  0.9   NaN
4         2     3  4.0   5.0
#增加一列
x['newColumn']=[1,1,1,1,1]
print(x)
       year state  pop  debt  newColumn
one    2000    ok  3.7  -1.2          1
two    2001    ok  3.6  -1.5          1
three  2002  good  2.4   NaN          1
four   2003   bad  0.9   NaN          1
4         2     3  4.0   5.0          1
#DataFrame转置
print(x.T)
           one  two three four  4
yeat       NaN  NaN   NaN  NaN  2
state       ok   ok  good  bad  3
pop        3.7  3.6   2.4  0.9  4
debt      -1.2 -1.5   NaN  NaN  5
newColumn    1    1     1    1  1

DataFrame算术:不重叠部分为NaN,重叠部分元素运算

x = DataFrame(numpy.arange(9.).reshape((3, 3)),
                columns = ['A','B','C'],
                index = ['a', 'b', 'c'])
y = DataFrame(numpy.arange(12).reshape((4, 3)),
                columns = ['A','B','C'],
                index = ['a', 'b', 'c', 'd'])
print(x)
     A    B    C
a  0.0  1.0  2.0
b  3.0  4.0  5.0
c  6.0  7.0  8.0
print(y)
   A   B   C
a  0   1   2
b  3   4   5
c  6   7   8
d  9  10  11
print(x+y)
      A     B     C
a   0.0   2.0   4.0
b   6.0   8.0  10.0
c  12.0  14.0  16.0
d   NaN   NaN   NaN

#DataFrame与Series运算:每行/列进行运算
frame = DataFrame(numpy.arange(9).reshape((3, 3)),
                  columns = ['A','B','C'],
                  index = ['a', 'b', 'c'])
print(frame)
   A  B  C
a  0  1  2
b  3  4  5
c  6  7  8
series=frame.ix[0]
print(series)
A    0
B    1
C    2
print(frame-series)
   A  B  C
a  0  0  0
b  3  3  3
c  6  6  6
# 按行运算:缺失列则为NaN
series2 = Series(range(4), index = ['A','B','C','D'])
print(series2)
A    0
B    1
C    2
D    3
print (frame + series2 )
   A  B   C   D
a  0  2   4 NaN
b  3  5   7 NaN
c  6  8  10 NaN
series3 = frame.A
print(series3)
a    0
b    3
c    6
Name: A, dtype: int64
 
print(frame.sub(series3,axis=0))#替换
   A  B  C
a  0  1  2
b  0  1  2
c  0  1  2

额外运算

df = DataFrame({
    'column1': numpy.random.randn(5),
    'column2': numpy.random.randn(5)
})
print(df)
    column1   column2
0 -0.336839 -0.420312
1 -1.172474  0.671025
2 -0.481245  0.292897
3  1.335457 -1.167297
4 -0.170178  0.140632
#每列最小
print(df.apply(min))
column1   -1.172474
column2   -1.167297
dtype: float64
#每行最小
print(df.apply(min, axis=1))
0   -0.420312
1   -1.172474
2   -0.481245
3   -1.167297
4   -0.170178
dtype: float64
#判断每个列,值是否都大于0
print(df.apply(
    lambda x: numpy.all(x>0),
    axis=1
))
0    False
1    False
2    False
3    False
4    False
dtype: bool
print(DataFrame(df[df.apply(
    lambda x: numpy.all(x>0),
    axis=1
)]))
    column1   column2
3  0.826535  0.415204
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容