C4.5的增益率准则

需要注意的是,增益率准则对可取值数目较少的属性有所偏好,因此,C4.5算法并不是直接选择增益率最大的候选划分属性,而是使用了一个启发式:

先从候选划分属性中找出信息增益高于平均水平的属性,再从中选择增益率最高的

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

  • 机器学习 经验 数据 数据中产生模型model 的算法 学习算法 learning algorithm 数据集 d...
    时待吾阅读 9,489评论 0 3
  • 积跬步以致千里,积怠惰以致深渊 注:本篇文章在整理时主要参考了 周志华 的《机器学习》。 主要内容 决策树是机器学...
    指尖上的魔术师阅读 5,309评论 0 5
  • 决策树理论在决策树理论中,有这样一句话,“用较少的东西,照样可以做很好的事情。越是小的决策树,越优于大的决策树”。...
    制杖灶灶阅读 11,178评论 0 25
  • 1、决策树算法 决策树(decision tree)又叫判定树,是基于树结构对样本属性进行分类的分类算法。以二分类...
    JasonJe阅读 7,868评论 0 22
  • 1. 什么是决策树 决策树是基于树结构进行决策。决策树学习的目的是产生一棵泛化能力强,处理未见示例能力强的决策树。...
    Persistence2阅读 2,817评论 0 0

友情链接更多精彩内容