内存对齐原理

内存对齐之前需要掌握的一张图

不同类型占用的字节图.png

内存对齐的目的

对于程序而言,一个变量的数据存储范围是在一个寻址步长范围内的话,这样一次寻址就可以读取到变量的值,如果是超出了步长范围内的数据存储,就需要读取两次寻址再进行数据的拼接,效率明显降低了。例如一个double类型的数据在内存中占据8个字节,如果地址是8,那么好办,一次寻址就可以了,如果是20呢,那就需要进行两次寻址了。这样就产生了数据对齐的规则,也就是将数据尽量的存储在一个步长内,避免跨步长的存储,这就是内存对齐。在32位编译环境下默认4字节对齐,在64位编译环境下默认8字节对齐。

a. 程序的执行效率提高

现代处理器一般都有多个级别的高速缓存,处理器访问这些高速缓存里的数据的效率要比访问内存里的数据效率高得多(就像处理器访问内存里的数据,比访问磁盘里的数据效率高得多一样。)。
就像上面介绍以的一样,一般来说,CPU 总是以字大小(32 位处理器上常常为 4 个字节)访问数据,所以如果数据没有内存对齐,CPU 访问这些数据时,可能就需要执行更多次的读取操作才行。在这样的机器上,读取 2 个字节数据往往比读取 4 个字节数据慢得多。

b. 访问范围提高

访问范围提高
对于任意给定的地址空间,如果体系架构可以确定 2 个 LSB 总是 0(例如 32 位机器),那么它可以访问 4 倍多的内存(2 个位能够表示 4 个不同状态)。从一个地址中去掉 2 个 LSB,将得到 4 字节的内存对齐,或者说“跨距”,因为地址每增加一,它就有效的增加 bit 2,而不是 bit 0。(鉴于低 2 位总是 00)
这甚至会影响系统的物理设计:如果地址总线的需要少 2 位,CPU 上的管脚就可以少 2 个。

c. 原子性的保障

前面提到 CPU 每次访问数据的宽度是一个字,如果C语言程序中的数据总是内存对齐的,那么 CPU 访问数据总是原子性的,这对于许多无锁数据结构和其他并发需求的正确操作至关重要。

对齐规则

规则:
1、数据成员对齐规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员的对齐按照#pragma pack指定的数值和这个数据成员自身长度中,比较小的那个进行。
2、结构(或联合)的整体对齐规则:在数据成员完成各自对齐之后,结构(或联合)本身也要进行对齐,对齐将按照#pragma pack指定的数值和结构(或联合)最大数据成员长度中,比较小的那个进行。
3、结合1、2可推断:当#pragma pack的n值等于或超过所有数据成员长度的时候,这个n值的大小将不产生任何效果。

#pragma pack其实就是指定内存对齐系数,如1,2,4,8,16。xcode默认的对齐系数是8.

例子

求以下两个结构体的字节大小

typedef struct {
        int a;      //4字节
        int b;      //4字节
        char c;     //1字节
        double d;   //8字节
        char e[7];  //7字节
} demoStruct1;
        
 typedef struct {
        int a;      //4字节
        int b;      //4字节
        char c;     //1字节
        char e[7];  //7字节
        double d;   //8字节
 } demoStruct2;
 
 NSLog(@"%lu -- %lu", sizeof(demoStruct1), sizeof(demoStruct2));

打印结果

 32 -- 24

分析如下
首先demoStruct1,起始offset为0
a,int类型,4个字节,<8,按4对齐,存放位置是[0,3]
b,int类型,4个字节,<8,按4对齐,存放位置是[4,7]
c,char类型,1个字节,<8,按1对齐,存放位置是[8,8]
d,double类型,8个字节,=8,按8对齐,当前位置不够,先补齐[9,15],然后存放,存放位置是[16,23]
e[7],char数组类型,7个char的字节,<8,按1对齐,存放位置是[24,30]
最后,补齐为8的整数倍,即补上[31,31]
综合:使用位置是[0,31] 占用字节数为32

再分析demoStruct2,起始offset为0
a,int类型,4个字节,<8,按4对齐,存放位置是[0,3]
b,int类型,4个字节,<8,按4对齐,存放位置是[4,7]
c,char类型,1个字节,<8,按1对齐,存放位置是[8,8]
e[7],char数组类型,7个char的字节,<8,按1对齐,存放位置是[9,15]
d,double类型,8个字节,=8,按8对齐,存放位置是[16,23]
综合:使用位置是[0,23] 占用字节数为24

适当的调整变量类型或位置,有助于提升对内存的利用率

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,185评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,652评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,524评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,339评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,387评论 6 391
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,287评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,130评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,985评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,420评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,617评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,779评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,477评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,088评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,716评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,857评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,876评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,700评论 2 354

推荐阅读更多精彩内容

  • 相信绝大多数的人都知道内存对齐,但是其最最底层的原理是啥呢? 内存在进行IO的时候,一次操作取的就是64个bit。...
    yanfeizhang阅读 12,774评论 0 4
  • Swift1> Swift和OC的区别1.1> Swift没有地址/指针的概念1.2> 泛型1.3> 类型严谨 对...
    cosWriter阅读 11,100评论 1 32
  • unsafe 包简单说明 unsafe,顾名思义,是不安全的,Go定义这个包名也是这个意思,让我们尽可能的不要使用...
    Gopherzhang阅读 1,510评论 8 3
  • 内存的历史 现代的intel处理器可以追溯到最早期的intel芯片。1.8085处理器充分利用了芯片整合技术,它将...
    Mr_Bluyee阅读 711评论 0 0
  • 源网址[英文] github上有大神翻译了一篇内存对齐的英文文献,我复现了一下过程; 发现其中有个地方有出入(st...
    十曰立阅读 1,196评论 0 3