机器人非参数滤波之二维直方图滤波算法实现

前面,我们介绍了基于一维网格地图的直方图滤波算法,今天我们将它扩展到二维网格地图,以进一步理解算法。正如前面所提到的那样,整个滤波的过程包含两个部分,测量更新运动更新最后得到网格地图的概率分布,以表示机器人目前处于的位置。

下面让我们讲解基于2维地图的直方图滤波算法的实现。

首先,我们需要初始化各个网格的初始概率:

初始化

    # initializes p to a uniform distribution over a grid of the same dimensions as colors
    pinit = 1.0 / float(len(colors)) / float(len(colors[0]))
    p = [[pinit for row in range(len(colors[0]))] for col in range(len(colors))]

其中 colors应该定义为下面的形式以表示每一网格的颜色信息

colors = [['R', 'G'],
          ['R', 'R'],
          ['G', 'R'],
          ['R', 'G'],
          ['G', 'G']]

sense function

然后是我们的 sense 函数:

    Nr=len(colors)
    Nc=len(colors[0])

    def sense(p, Z):
      q=[[p[i][j]*sensor_right if colors[i][j]==Z else p[i][j]*(1-sensor_right) for j in range(Nc) ] for i in range(Nr)]
      sumq=sum([sum(e) for e in q])
      q=[[x/sumq for x in e] for e in q]
      return q

与一维的网格地图一样,分别遍历每一个网格,并且根据测量值(Z)是否与地图值(colors[i][j])相同以分别乘以相应的概率,然后进行求和,整个过程为一个卷积操作,然后进行归一化,得到由测量引起的概率分布。

move function

    motions = [[0, 0], [-1, 0], [0, 1], [0, -1], [0, 1], [1, 0]]

    def move(p, U):
      q=[[ p_move*p[(i-U[0])%Nr][(j-U[1])%Nc]+(1-p_move)*p[i][j] for j in range(Nc) ] for i in range(Nr)]
      return q

这里为了简化情况,只考虑了一个 p_move 即机器人是否移动的概率,然后与sense 函数一样,对所有网格进行遍历,根据定义的运动模型,分别乘上相应的概率,最后得到运动更新之后的概率分布。

输出

我们根据定义的观测值,计算最后的概率分布


colors = [['R', 'G'],
          ['R', 'R'],
          ['G', 'R'],
          ['R', 'G'],
          ['G', 'G']]


measurements = ['R', 'R', 'G', 'G', 'G', 'R']
motions = [[0, 0], [-1, 0], [0, 1], [0, -1], [0, 1], [1, 0]]
p = localize(colors,measurements,motions,sensor_right=0.99, p_move=0.97)

print('Estimated probability at each location:') 
show(p) 

最终得到的输出如下:

Estimated probability at each location:
[[0.07876,0.00793],
 [0.02465,0.85350],
 [0.00001,0.00004],
 [0.03447,0.00002],
 [0.00003,0.00058]]
 

参考资料

  • 概率机器人

不足之处,敬请斧正; 若你觉得文章还不错,请关注微信公众号“SLAM 技术交流”继续支持我们,笔芯:D。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容