Linear Agebra Notes

In the last few weeks, I have been learning 'Linear Algebra' in 'Khan Academy' in order to enhance my mathematics foundation. The course contains abundant concepts, knowledge points and solving skills; so it is better that I should take some notes during learning.

Determinant

  • 2x2 matrix
    For example, we assume A is a 2x2 matrix. So according to the formula, the determinant of 'A' is equal to :
A = [a b]
      [c d]
|A| = ad - bc
  • 3x3 matrix
    Turning to calculate determinant of a 3x3 matrix, the process will be more complicated.
A = [a b c]
      [e f g]
      [h i j]
|A| = a * (fg-ij) + (-b) * (eg-hj) + c * (ef-hi)

Inverse Matrix

If matrix A multiply another matrix B and the outcome is equal to an unit matrix, so we call matrix B is the inverse matrix of matrix A.

A * inverse(A) = E

Linear Span and Dependence

Here we have a set of vector called V, and vi belongs to V only if i is a real number.

  • Linear Span
c1v1+c2v2+...+civi = VR 

In the equation above, ci represent constant scalars and VR is an arbitrary vector with arbitrary dimensions. If the equation is true, so we said V can be expanded to linear span n, while n is the dimension of VR.

  • Linear Dependence
    The method to prove if V is linear dependent is quite similar to that of Linear Span.
c1v1+c2v2+...+civi = 0 

To make this equation true, if at least one ci has an non-zero value, then V is linear dependent; but if all 0 is the only solution to this equation, that we said V is linear independent.

Basis

Basis is a minimum set of vectors that its span is equal to the subspace of R(n). Obviously, basis is linear independent; furthermore, if there is a basis of subspace U, then any arbitrary vector in U can be only represented by an unique basis combination.Following is the proof:

1.assume A is a vector of U

2.assume a combination that can represent A
A = c1v1 + c2v2 + ... + cnvn

3.assume another combination that makes the equation true
A = d1v1 + d2v2 + ... + dnvn 

4.these two equations minus each other and get a new equation
0 = (c1-d1)v1 + (c2-d2)v2 + ... + (cn-dn)vn

5.us we know, a basis is linear independent; 
so only all 0 can be the solution of that equation in step 4. 
In conclusion, c1 = d1, c2 = d2, ..., cn = dn. 
Then we can prove that there is only one basis combination can represent a vector in its span.
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,657评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,889评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,057评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,509评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,562评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,443评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,251评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,129评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,561评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,779评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,902评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,621评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,220评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,838评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,971评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,025评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,843评论 2 354

推荐阅读更多精彩内容