常见的几种Flume日志收集场景实战

这里主要介绍几种常见的日志的source来源,包括监控文件型,监控文件内容增量,TCP和HTTP。

Spool类型

用于监控指定目录内数据变更,若有新文件,则将新文件内数据读取上传

教你一步搭建Flume分布式日志系统最后有介绍此案例

Exec

EXEC执行一个给定的命令获得输出的源,如果要使用tail命令,必选使得file足够大才能看到输出内容

创建agent配置文件

# vi /usr/local/flume170/conf/exec_tail.conf

a1.sources =r1

a1.channels=c1 c2

a1.sinks=k1 k2

#Describe/configure the source

a1.sources.r1.type =exec

a1.sources.r1.channels=c1 c2

a1.sources.r1.command= tail -F /var/log/haproxy.log#Use a channel which buffers events in memory

a1.channels.c1.type =memory

a1.channels.c1.capacity= 1000

a1.channels.c1.transactionCapacity= 100

a1.channels.c2.type=file

a1.channels.c2.checkpointDir= /usr/local/flume170/checkpoint

a1.channels.c2.dataDirs= /usr/local/flume170/data#Describe the sink

a1.sinks.k1.type =logger

a1.sinks.k1.channel=c1

a1.sinks.k2.type=FILE_ROLL

a1.sinks.k2.channel=c2

a1.sinks.k2.sink.directory= /usr/local/flume170/files

a1.sinks.k2.sink.rollInterval= 0

启动flume agent a1

# /usr/local/flume170/bin/flume-ng agent -c . -f /usr/local/flume170/conf/exec_tail.conf -n a1 -Dflume.root.logger=INFO,console

生成足够多的内容在文件里

# for i in {1..100};do echo "exec tail$i" >> /usr/local/flume170/log_exec_tail;echo $i;sleep 0.1;done

在H32的控制台,可以看到以下信息:

Http

JSONHandler型

基于HTTP POST或GET方式的数据源,支持JSON、BLOB表示形式

创建agent配置文件

# vi /usr/local/flume170/conf/post_json.conf

a1.sources =r1

a1.channels=c1

a1.sinks=k1#Describe/configure the source

a1.sources.r1.type =org.apache.flume.source.http.HTTPSource

a1.sources.r1.port= 5142

a1.sources.r1.channels=c1#Use a channel which buffers events in memory

a1.channels.c1.type =memory

a1.channels.c1.capacity= 1000

a1.channels.c1.transactionCapacity= 100#Describe the sink

a1.sinks.k1.type =logger

a1.sinks.k1.channel= c1

启动flume agent a1

# /usr/local/flume170/bin/flume-ng agent -c . -f /usr/local/flume170/conf/post_json.conf -n a1 -Dflume.root.logger=INFO,console

生成JSON 格式的POST request

# curl -X POST -d '[{ "headers" :{"a" : "a1","b" : "b1"},"body" : "idoall.org_body"}]' http://localhost:8888

在H32的控制台,可以看到以下信息:

Tcp

Syslogtcp监听TCP的端口做为数据源

创建agent配置文件

# vi /usr/local/flume170/conf/syslog_tcp.conf

a1.sources =r1

a1.channels=c1

a1.sinks=k1#Describe/configure the source

a1.sources.r1.type =syslogtcp

a1.sources.r1.port= 5140

a1.sources.r1.host=H32

a1.sources.r1.channels=c1#Use a channel which buffers events in memory

a1.channels.c1.type =memory

a1.channels.c1.capacity= 1000

a1.channels.c1.transactionCapacity= 100#Describe the sink

a1.sinks.k1.type =logger

a1.sinks.k1.channel= c1

启动flume agent a1

# /usr/local/flume170/bin/flume-ng agent -c . -f /usr/local/flume170/conf/syslog_tcp.conf -n a1 -Dflume.root.logger=INFO,console

测试产生syslog

# echo "hello idoall.org syslog" | nc localhost 5140

在H32的控制台,可以看到以下信息:

Flume Sink Processors和Avro类型

Avro可以发送一个给定的文件给Flume,Avro 源使用AVRO RPC机制。

failover的机器是一直发送给其中一个sink,当这个sink不可用的时候,自动发送到下一个sink。channel的transactionCapacity参数不能小于sink的batchsiz

在H32创建Flume_Sink_Processors配置文件

# vi /usr/local/flume170/conf/Flume_Sink_Processors.conf

a1.sources =r1

a1.channels=c1 c2

a1.sinks=k1 k2#Describe/configure the source

a1.sources.r1.type =syslogtcp

a1.sources.r1.port= 5140a1.sources.r1.channels=c1 c2

a1.sources.r1.selector.type=replicating#Use a channel which buffers events in memory

a1.channels.c1.type =memory

a1.channels.c1.capacity= 1000

a1.channels.c1.transactionCapacity= 100

a1.channels.c2.type=memory

a1.channels.c2.capacity= 1000

a1.channels.c2.transactionCapacity= 100#Describe the sink

a1.sinks.k1.type =avro

a1.sinks.k1.channel=c1

a1.sinks.k1.hostname=H32

a1.sinks.k1.port= 5141a1.sinks.k2.type=avro

a1.sinks.k2.channel=c2

a1.sinks.k2.hostname=H33

a1.sinks.k2.port= 5141#这个是配置failover的关键,需要有一个sink groupa1.sinkgroups =g1

a1.sinkgroups.g1.sinks=k1 k2#处理的类型是failover

a1.sinkgroups.g1.processor.type =failover#优先级,数字越大优先级越高,每个sink的优先级必须不相同

a1.sinkgroups.g1.processor.priority.k1 = 5

a1.sinkgroups.g1.processor.priority.k2= 10#设置为10秒,当然可以根据你的实际状况更改成更快或者很慢

a1.sinkgroups.g1.processor.maxpenalty = 10000

在H32创建Flume_Sink_Processors_avro配置文件

# vi/usr/local/flume170/conf/Flume_Sink_Processors_avro.conf

a1.sources =r1

a1.channels=c1

a1.sinks=k1#Describe/configure the source

a1.sources.r1.type =avro

a1.sources.r1.channels=c1

a1.sources.r1.bind= 0.0.0.0

a1.sources.r1.port= 5141#Use a channel which buffers events in memory

a1.channels.c1.type =memory

a1.channels.c1.capacity= 1000

a1.channels.c1.transactionCapacity= 100#Describe the sink

a1.sinks.k1.type =logger

a1.sinks.k1.channel= c1

将2个配置文件复制到H33上一份

/usr/local/flume170# scp -r /usr/local/flume170/conf/Flume_Sink_Processors.conf   H33:/usr/local/flume170/conf/Flume_Sink_Processors.conf

/usr/local/flume170# scp -r /usr/local/flume170/conf/Flume_Sink_Processors_avro.conf   H33:/usr/local/flume170/conf/Flume_Sink_Processors_avro.conf

打开4个窗口,在H32和H33上同时启动两个flume agent

# /usr/local/flume170/bin/flume-ng agent -c . -f /usr/local/flume170/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console

# /usr/local/flume170/bin/flume-ng agent -c . -f /usr/local/flume170/conf/Flume_Sink_Processors.conf -n a1 -Dflume.root.logger=INFO,console

然后在H32或H33的任意一台机器上,测试产生log

# echo "idoall.org test1 failover" | nc H32 5140

因为H33的优先级高,所以在H33的sink窗口,可以看到以下信息,而H32没有:

这时我们停止掉H33机器上的sink(ctrl+c),再次输出测试数据

# echo "idoall.org test2 failover" | nc localhost 5140

可以在H32的sink窗口,看到读取到了刚才发送的两条测试数据:

我们再在H33的sink窗口中,启动sink:

# /usr/local/flume170/bin/flume-ng agent -c . -f /usr/local/flume170/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console

输入两批测试数据:

# echo "idoall.org test3 failover" | nc localhost 5140 && echo "idoall.org test4 failover" | nc localhost 5140

在H33的sink窗口,我们可以看到以下信息,因为优先级的关系,log消息会再次落到H33上:

Load balancing Sink Processor

load balance type和failover不同的地方是,load balance有两个配置,一个是轮询,一个是随机。两种情况下如果被选择的sink不可用,就会自动尝试发送到下一个可用的sink上面。

在H32创建Load_balancing_Sink_Processors配置文件

# vi /usr/local/flume170/conf/Load_balancing_Sink_Processors.conf

a1.sources =r1

a1.channels=c1

a1.sinks=k1 k2#Describe/configure the sourcea1.sources.r1.type =syslogtcp

a1.sources.r1.port= 5140

a1.sources.r1.channels=c1#Use a channel which buffers events in memory

a1.channels.c1.type =memory

a1.channels.c1.capacity= 1000

a1.channels.c1.transactionCapacity= 100#Describe the sink

a1.sinks.k1.type =avro

a1.sinks.k1.channel=c1

a1.sinks.k1.hostname=H32

a1.sinks.k1.port= 5141

a1.sinks.k2.type=avro

a1.sinks.k2.channel=c1

a1.sinks.k2.hostname=H33

a1.sinks.k2.port= 5141#这个是配置failover的关键,需要有一个sink group

a1.sinkgroups =g1

a1.sinkgroups.g1.sinks=k1 k2#处理的类型是load_balance

a1.sinkgroups.g1.processor.type =load_balance

a1.sinkgroups.g1.processor.backoff=true

a1.sinkgroups.g1.processor.selector=round_robin

在H32创建Load_balancing_Sink_Processors_avro配置文件

# vi /usr/local/flume170/conf/Load_balancing_Sink_Processors_avro.conf

a1.sources =r1

a1.channels=c1

a1.sinks=k1#Describe/configure the source

a1.sources.r1.type =avro

a1.sources.r1.channels=c1

a1.sources.r1.bind= 0.0.0.0

a1.sources.r1.port= 5141#Use a channel which buffers events in memory

a1.channels.c1.type =memory

a1.channels.c1.capacity= 1000

a1.channels.c1.transactionCapacity= 100#Describe the sink

a1.sinks.k1.type =logger

a1.sinks.k1.channel= c1

将2个配置文件复制到H33上一份

/usr/local/flume170# scp -r /usr/local/flume170/conf/Load_balancing_Sink_Processors.conf H33:/usr/local/flume170/conf/Load_balancing_Sink_Processors.conf

/usr/local/flume170# scp -r /usr/local/flume170/conf/Load_balancing_Sink_Processors_avro.conf H33:/usr/local/flume170/conf/Load_balancing_Sink_Processors_avro.conf

打开4个窗口,在H32和H33上同时启动两个flume agent

# /usr/local/flume170/bin/flume-ng agent -c . -f /usr/local/flume170/conf/Load_balancing_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console

# /usr/local/flume170/bin/flume-ng agent -c . -f /usr/local/flume170/conf/Load_balancing_Sink_Processors.conf -n a1 -Dflume.root.logger=INFO,console

然后在H32或H33的任意一台机器上,测试产生log,一行一行输入,输入太快,容易落到一台机器上

# echo "idoall.org test1" | nc H32 5140

# echo "idoall.org test2" | nc H32 5140

# echo "idoall.org test3" | nc H32 5140

# echo "idoall.org test4" | nc H32 5140

在H32的sink窗口,可以看到以下信息

1. 14/08/10 15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 }

2. 14/08/10 15:35:33 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 34 idoall.org test4 }

在H33的sink窗口,可以看到以下信息:

1. 14/08/10 15:35:27 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 }

2. 14/08/10 15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 }

说明轮询模式起到了作用。

以上均是建立在H32和H33能互通,且Flume配置都正确的情况下运行,且都是非常简单的场景应用,值得注意的一点是Flume说是日志收集,其实还可以广泛的认为“日志”可以当作是信息流,不局限于认知的日志。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,588评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,456评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,146评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,387评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,481评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,510评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,522评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,296评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,745评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,039评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,202评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,901评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,538评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,165评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,415评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,081评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,085评论 2 352

推荐阅读更多精彩内容