numpy之meshgrid和where

meshgrid

np.meshgrid()

np.meshgrid从坐标向量返回坐标矩阵。

这样说可能很抽象。举个例子。


x = np.arange(-2,2)
y = np.arange(0,3)#生成一位数组,其实也就是向量

x
Out[31]: array([-2, -1,  0,  1])

y
Out[32]: array([0, 1, 2])

z,s = np.meshgrid(x,y)#将两个一维数组变为二维矩阵

z
Out[36]: 
array([[-2, -1,  0,  1],
       [-2, -1,  0,  1],
       [-2, -1,  0,  1]])

s
Out[37]: 
array([[0, 0, 0, 0],
       [1, 1, 1, 1],
       [2, 2, 2, 2]])

从代码上看,我们得到了这样一组值:

-2, -1, 0, 1,---- 0, 0, 0, 0
-2, -1, 0, 1,---- 1, 1, 1, 1

也就是说,它将 x 变成了矩阵 z 的行向量,y 变成了矩阵 s 的列向量。

反过来,也是一样的:

z,s = np.meshgrid(y,x)

z
Out[40]: 
array([[0, 1, 2],
       [0, 1, 2],
       [0, 1, 2],
       [0, 1, 2]])

s
Out[41]: 
array([[-2, -2, -2],
       [-1, -1, -1],
       [ 0,  0,  0],
       [ 1,  1,  1]])

以上面这个例子来说,z 和 s 就构成了一个坐标矩阵,实际上也就是一个网格,不知道你没有注意到,z 和 s 的维数是一样的,是一个4 × 4的网格矩阵,也就是坐标矩阵。

meshgrid 方法的参数数量不受限,可以得到任意 N 维空间中的坐标矩阵。

注意到,传入的对象是一维的。

想到这里,我觉得,这可能和方程式有关系(很可能我的感觉是错的,等以后发现再改这句话,但是我觉得这样的话,会很好理解这个函数方法),也就是行列式,但是方程式的右侧的 y 只有一列。

a1x1 + b1x2 + c1x3 + d1x4 + ...... =y1
a2x1 + b2x2 + c2x3 + d2x4 + ...... =y2
...
...


x, y = np.meshgrid(np.arange(-1, 1, 0.01), np.arange(-1, 1, 0.01))

contor = np.sqrt(x ** 2 + y ** 2)
plt.imshow(contor)
plt.colorbar()
plt.show()

结果

np.where()

where(condition, [x, y]) 当condition为True时,返回 x , 否则返回 y。

其实,在x, y 为一维数组时,就相当于:

[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

测试:


In [3]: x = np.arange(9).reshape(3,3)#创建一个3×3的矩阵

In [4]: x
Out[4]:
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])

In [5]: np.where(x>4) #只输入condition
Out[5]: (array([1, 2, 2, 2], dtype=int64), array([2, 0, 1, 2], dtype=int64))

In [6]: np.where(x>7)# 只输入condition
Out[6]: (array([2], dtype=int64), array([2], dtype=int64))

通过上面的例子,我们可以发现,只输入condition的话,得到的结果是一个位置索引。它们就是满足条件的元素的索引,即为True的元素。

说明下:返回的第一个第一个数组为行坐标,第二个为纵坐标。

我们还可以用where来这样做:


In [8]: y = np.random.randn(3,3)

In [9]: y
Out[9]:
array([[ 1.59809956, -0.42735851,  1.46593089],
       [-0.26497622,  0.53948157, -2.01569974],
       [-0.11099139, -1.70616601, -1.34821361]])

In [10]: np.where(y > 0, 4, -4)
Out[10]:
array([[ 4, -4,  4],
       [-4,  4, -4],
       [-4, -4, -4]])

很显然,np.where()是可以嵌套使用的,其类似于if..elif...else...,如果我们有多个条件的话。

大家都知道,布尔值在计算过程中是可以当做0和1处理的。
因此,我们还可以这样:

result = 3 * (con2 & -cond1) + 2 * - (cond1 | cond2)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容