数据挖掘实践指南读书笔记4

写在之前

本书涉及的源程序和数据都可以在以下网站中找到:http://guidetodatamining.com/
这本书理论比较简单,书中错误较少,动手锻炼较多,如果每个代码都自己写出来,收获不少。总结:适合入门。
欢迎转载,转载请注明出处,如有问题欢迎指正。
合集地址:https://www.zybuluo.com/hainingwyx/note/559139

算法评估及kNN

10-flod Cross Validation:将数据集分为10份,使用其中9份进行训练,另外1份用作测试,重复该过程10次。

留一法:n-flod Cross Validation。结果是随机的,不是确定值,和数据的划分有关。缺点在于计算机开销很大。分层采样的时候保证样本的均匀性很重要。

混淆矩阵:行表示测试样本的真实类别,列表示预测器所预测出来的类别。可揭示分类器性能。

# divide data into 10 buckets
import random

def buckets(filename, bucketName, separator, classColumn):
    """the original data is in the file named filename
    bucketName is the prefix for all the bucket names
    separator is the character that divides the columns
    (for ex., a tab or comma and classColumn is the column
    that indicates the class"""

    # put the data in 10 buckets
    numberOfBuckets = 10
    data = {}
    # first read in the data and divide by category
    with open(filename) as f:
        lines = f.readlines()
    for line in lines:
        if separator != '\t':
            line = line.replace(separator, '\t')
        # first get the category
        category = line.split()[classColumn]
        data.setdefault(category, [])   #set the value for dic data
        data[category].append(line)     #all the information 
    # initialize the buckets [[], [], ...]
    buckets = []
    for i in range(numberOfBuckets):
        buckets.append([])       
    # now for each category put the data into the buckets
    for k in data.keys():
        #randomize order of instances for each class
        #data[k] is a list of line
        random.shuffle(data[k])
        bNum = 0
        # divide into buckets
        for item in data[k]:
            buckets[bNum].append(item)
            bNum = (bNum + 1) % numberOfBuckets

    # write to file
    for bNum in range(numberOfBuckets):
        f = open("%s-%02i" % ('tmp/'+bucketName, bNum + 1), 'w')
        for item in buckets[bNum]:
            f.write(item)
        f.close()

# example of how to use this code          
buckets("data/mpgData.txt", 'mpgData',',',0)

分类器评价:Kappa统计量。相对于随机分类器而言的分类器效果。
$$
\kappa =\frac{P(c)-P(r)}{1-P(r)}
$$
$P(c)$是实际分类器的准确率,$P(r)$是随机分类器的精确率。

Kappa区间 性能
<0 比随机方法性能差
0.01-0.2 轻微一致
0.21-0.4 一般一致
0.41-0.6 中度一致
0.61-0.8 高度一致
0.81-1 接近完美

KNN:当有一个样本是比较特别的时候,使用最近邻可能会导致特别样本的存在而出现误分类。改进的办法就是考察k个邻居。离得越近,影响因子就越大。影响因子可以用距离的倒数来表示。

def knn(self, itemVector):
  """returns the predicted class of itemVector using k
  Nearest Neighbors"""
  # changed from min to heapq.nsmallest to get the
  # k closest neighbors
  neighbors = heapq.nsmallest(self.k,
  [(self.manhattan(itemVector, item[1]), item)
  for item in self.data])
  # each neighbor gets a vote
  results = {}
  for neighbor in neighbors: 
  theClass = neighbor[1][0]
  results.setdefault(theClass, 0)
  results[theClass] += 1
  resultList = sorted([(i[1], i[0]) for i in results.items()], reverse=True)
  #get all the classes that have the maximum votes
  maxVotes = resultList[0][0]
  possibleAnswers = [i[1] for i in resultList if i[0] == maxVotes]
  # randomly select one of the classes that received the max votes
  answer = random.choice(possibleAnswers)
  return( answer)

做工程,数据量大的时候算法的效果越好。做论文还是要研究出一个具有少量性能提高的算法。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容