2024-10-11

  1. 743. 网络延迟时间 - 力扣(LeetCode)
    法一:单源最短路径——Bellman-Ford
    O(NM)
class Solution {
public:
    int networkDelayTime(vector<vector<int>>& times, int n, int k) {
        dist = vector<int>(n + 1, 1e9);
        dist[k] = 0;
        for (int round = 1; round < n; round++) {
            bool flag = true;
            for (vector<int>& edge : times) {
                int x = edge[0];
                int y = edge[1];
                int z = edge[2];
                if (dist[x] + z < dist[y]) {
                    dist[y] = dist[x] + z;
                    flag = false;
                }
            }
            if (flag) break;
        }
        int ans = 0;
        for (int i = 1; i <= n; i++) ans = max(ans, dist[i]);
        return ans == 1e9 ? -1 : ans;
    }

private:
    vector<int> dist;
};

法二.1:单源最短路径——Dijkstra
O(NN)

class Solution {
public:
    int networkDelayTime(vector<vector<int>>& times, int n, int k) {
        ver = vector<vector<int>>(n + 1, vector<int>());
        edge = vector<vector<int>>(n + 1, vector<int>());
        for (vector<int>& time : times) {
            int x = time[0];
            int y = time[1];
            int z = time[2];
            ver[x].push_back(y);
            edge[x].push_back(z);
        }
        
        dist = vector<int>(n + 1, 1e9);
        dist[k] = 0;
        expand = vector<bool>(n + 1, false);

        for (int round = 1; round <= n; round++) {
            int minVal = 1e9, minIdx = 0;
            for (int i = 1; i <= n; i++) {
                if (!expand[i] && dist[i] < minVal) {
                    minVal = dist[i];
                    minIdx = i;
                }
            }
            if (minIdx == 0) break;
            expand[minIdx] = true;
            for (int i = 0; i < ver[minIdx].size(); i++) {
                int y = ver[minIdx][i];
                int z = edge[minIdx][i];
                if (dist[y] > dist[minIdx] + z) {
                    dist[y] = dist[minIdx] + z;
                }
            }
        }
        int ans = 0;
        for (int i = 1; i <= n; i++) ans = max(ans, dist[i]);
        return ans == 1e9 ? -1 : ans;
    }

private:
    vector<int> dist;
    // 出边数组
    vector<vector<int>> ver;
    // 每条边的权重
    vector<vector<int>> edge;
    // 记录每个点是否已被扩展
    vector<bool> expand;
};

法二.2:单源最短路径——Dijkstra+堆
O(MlogM) 此题堆用了懒惰删除,所以为logM

class Solution {
public:
    int networkDelayTime(vector<vector<int>>& times, int n, int k) {
        ver = vector<vector<int>>(n + 1, vector<int>());
        edge = vector<vector<int>>(n + 1, vector<int>());
        for (vector<int>& time : times) {
            int x = time[0];
            int y = time[1];
            int z = time[2];
            ver[x].push_back(y);
            edge[x].push_back(z);
        }
        
        dist = vector<int>(n + 1, 1e9);
        dist[k] = 0;
        expand = vector<bool>(n + 1, false);

        q.push({0, k});
        while (!q.empty()) {
            int minIdx = q.top().second;
            q.pop();
            if (expand[minIdx]) continue; // 懒惰删除
            expand[minIdx] = true;
            for (int i = 0; i < ver[minIdx].size(); i++) {
                int y = ver[minIdx][i];
                int z = edge[minIdx][i];
                if (dist[y] > dist[minIdx] + z) {
                    dist[y] = dist[minIdx] + z;
                    q.push({-dist[y], y}); // 此处只要更新就入堆,在出堆时再判断是否已扩展——懒惰删除
                }
            }
        }
        int ans = 0;
        for (int i = 1; i <= n; i++) ans = max(ans, dist[i]);
        return ans == 1e9 ? -1 : ans;
    }

private:
    vector<int> dist;
    // 出边数组
    vector<vector<int>> ver;
    // 每条边的权重
    vector<vector<int>> edge;
    // 记录每个点是否已被扩展
    vector<bool> expand;
    // <-距离,编号>
    priority_queue<pair<int, int>> q;
};
  1. 1334. 阈值距离内邻居最少的城市 - 力扣(LeetCode)
    多元最短路径——Floyd
class Solution {
public:
    int findTheCity(int n, vector<vector<int>>& edges, int distanceThreshold) {
        // 邻接矩阵
        vector<vector<int>> d(n, vector<int>(n, 1e9));
        for (int i = 0; i < n; i++) d[i][i] = 0;
        for (vector<int>& edge : edges) {
            int x = edge[0];
            int y = edge[1];
            int z = edge[2];
            d[x][y] = d[y][x] = z;
        }
        // Floyd
        for (int k = 0; k < n; k++)
            for (int i = 0; i < n; i++)
                for (int j = 0; j < n; j++)
                    d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
        // 解题
        int minNeighbor = 1e9, ans;
        for (int i = 0; i < n; i++) {
            int neighbor = 0;
            for (int j = 0; j < n; j++) 
                if (i != j && d[i][j] <= distanceThreshold) 
                    neighbor++;
            if (neighbor < minNeighbor || neighbor == minNeighbor && i > ans) {
                minNeighbor = neighbor;
                ans = i;
            }
        }
        return ans;
    }
};
  1. 1584. 连接所有点的最小费用 - 力扣(LeetCode)
class Solution {
public:
    int minCostConnectPoints(vector<vector<int>>& points) {
        // 建边
        vector<vector<int>> edges;
        int n = points.size();
        for (int i = 0; i < n; i++) 
            for (int j = i + 1; j < n; j++)
                edges.push_back({i, j, abs(points[i][0] - points[j][0]) + abs(points[i][1] - points[j][1])});
        // Kruskal
        sort(edges.begin(), edges.end(), 
            [](const vector<int>& a, const vector<int>& b) {
                return a[2] < b[2];
            });
        int ans = 0;
        // 并查集
        fa = vector<int>(n);
        for (int i = 0; i < n; i++) fa[i] = i;
        for (vector<int> edge : edges) {
            int x = edge[0];
            int y = edge[1];
            int z = edge[2];
            x = find(x);
            y = find(y);
            if (x != y) {
                ans += z;
                fa[x] = y;
            }
        }
        return ans;
    }

private:
    int find(int x) {
        if (x == fa[x]) return x;
        return fa[x] = find(fa[x]);
    }

    vector<int> fa;
};
  1. 8. 字符串转换整数 (atoi) - 力扣(LeetCode)
class Solution {
public:
    int myAtoi(string s) {
        int index = 0, n = s.length();
        // 1. 空格
        while (index < n && s[index] == ' ') index++;
        // 2. 符号
        int sign = 1;
        if (index < n && (s[index] == '+' || s[index] == '-')) {
            sign = s[index] == '+' ? 1 : -1;
            index++;
        }
        // 3. 转换
        while (index < n && s[index] == '0') index++;
        int val = 0;
        while (index < n && s[index] >= '0' && s[index] <= '9') {
            // 4. 舍入
            if (val > (2147483647 - (s[index] - '0')) / 10)
                if (sign == 1) return 2147483647;
                else return -2147483648;
            val = val * 10 + (s[index] - '0');
            index++;
        }
        return sign * val;
    }
};
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容