kafka生产者配置参数

1.ack

  • ack=0, 生产者在成功写入消息之前不会等待任何来自服务器的相应。如果出现问题生产者是感知不到的,消息就丢失了。不过因为生产者不需要等待服务器响应,所以它可以以网络能够支持的最大速度发送消息,从而达到很高的吞吐量。
  • ack=1,只要集群的首领节点收到消息,生产这就会收到一个来自服务器的成功响应。如果消息无法达到首领节点(比如首领节点崩溃,新的首领还没有被选举出来),生产者会收到一个错误响应,为了避免数据丢失,生产者会重发消息。但是,这样还有可能会导致数据丢失,如果收到写成功通知,此时首领节点还没来的及同步数据到follower节点,首领节点崩溃,就会导致数据丢失。
  • ack=-1, 只有当所有参与复制的节点都收到消息时,生产这会收到一个来自服务器的成功响应,这种模式是最安全的,它可以保证不止一个服务器收到消息。

2.buffer.memory
该参数用来设置生产者内存缓冲区的大小,生产者用它缓冲要发送到服务器的消息。如果应用程序发送消息的速率比写入kafka的速度要快,会导致生产者空间不足。这个时候,send()方法调用要么被阻塞,要么抛出异常,取决于如何设置max.block.ms,表示在抛出异常之前可以阻塞一段时间。

3.compression.type
默认情况下,消息发送时不会被压缩。该参数可以设置成snappy,gziplz4,它指定了消息发送给broker之前使用哪一种压缩算法。snappy占用较少的CPU,却能提供较好的性能和相当可观的压缩比,如果比较关注性能和网络带宽,可以使用这种压缩算法。gzip压缩算法一般会占用比较多的CPU,但会提供更高的压缩,如果网络带宽有限,可以使用这种算法。使用压缩可以降低网络传输开销和存储开销,而这往往是向kafka发送消息的瓶颈所在。

4.retires
生产者从服务器收到的错误有可能是临时性的错误(比如分区找不到首领)。在这种情况下,如果达到了retires设置的次数,生产者会放弃重试并返回错误。默认情况下,生产者会在每次重试之间等待100ms,可以通过retry.backoff.ms参数来修改这个时间间隔。建议在设置重试次数和等待间隔之前,测一下恢复一个崩溃节点需要多久时间(比如所有分区选举出首领需要多长时间),让总的重试时间比kafka集群从崩溃中恢复的时间长,否则生产者会过早的放弃重试。不过有些错误不是临时性错误,没办法通过重试来解决,比如消息太大错误,一般情况下,因为生产者会自动重试,所以没必要在代码逻辑里处理那些可重试的错误,只需要处理那些不可能重试错误或重试次数超过上限的情况。

5.batch.size
当有多个消息要被发送到同一个分区时,生产者会把它们放在同一个批次里。该参数指定了一个批次可以使用的内存大小,按照字节数计算,而不是消息个数。当批次被填满,批次里的所有消息会被发送出去。不过生产者并不一定都会等到批次被填满才发送,半满的批次,甚至只包含一个消息的批次也可能被发送。所以就算把batch.size设置的很大,也不会造成延迟,只会占用更多的内存而已,如果设置的太小,生产者会因为频繁发送消息而增加一些额外的开销。

6.linger.ms
该参数指定了生产者在发送批次之前等待更多消息加入批次的时间。KafkaProducer会在批次填满或linger.ms达到上限时把批次发送出去。默认情况下,只要有可用的线程,就算批次里只有一个消息,生产者也会把消息发送出去。把linger.ms设置成大于0的数,让生产者在发送批次前等一会,使更多的消息加入这个批次,这样做会增加延迟,但也会提高吞吐量。

7.client.id
该参数可以是任意的字符串,服务器会用它识别消息的来源,还可以用在日志和配额指标里(限速)。

8.max.in.flight.requests.per.connection
该参数指定了生产者在收到服务器响应之前可以发送多少消息。它的值越高,就会占用越多的内存,不过也会提升吞吐量。把它设置成1可以保证消息是按照发送的顺序写入服务器的,即使发生了重试。

***9.timeout.ms、request.timeout.ms、metadata.fetch.timeout.ms
request.timeout.ms指定了生产者在发送数据时等待服务器返回响应的时间,metadata.fetch.timeout.ms 指定了生产这在获取元数据(比如目标分区的leader是谁)时等待服务器返回响应的时间。如果等待响应超时,那么生产这要么重试,要么返回一个错误(抛出异常或者执行回调)。timeout.ms指定了broker等待同步副本返回消息确认的时间,与ack的配置相匹配——如果在指定时间内没有收到同步副本的确认,那么broker会返回一个错误。

10.max.block.ms
该参数指定了在调用send()方法或使用partitionsFor()方法获取元数据时生产者的阻塞时间,当生产者的缓冲区已满,或没有可用的元数据时,这些方法就会阻塞。在阻塞时间达到max.block.ms时,生产者抛出超时异常。

11.max.request.size
该参数用于控制生产者发送的请求大小,它可以指定能发送的单个消息的最大值,也可以指单个请求里所有消息的总大小。broker对可接收的消息最大值也有自己的限制(message.max.size),所以两边的配置最好匹配,避免生产者发送的消息被broker拒绝。

12.receive.buffer.bytes和send.buffer.bytes
这两个参数分别指定了TCP socket接收和发送数据包的缓冲区大小,如果它们被设置成-1,就使用操作系统的默认值。如果生产者或消费者与broker 处于不同的数据中心,那么可以适当增大这些值,因为跨数据中心的网络一般都有比较高的延迟和比较低的带宽。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351

推荐阅读更多精彩内容