基于tensorflow+DNN的MNIST数据集手写数字分类

2018年9月17日笔记

tensorflow是谷歌google的深度学习框架,tensor中文叫做张量,flow叫做流。
DNN是deep neural network的简称,中文叫做深层神经网络,有时也叫做多层感知机(Multi-Layer perceptron,MLP)。
从DNN按不同层的位置划分,DNN内部的神经网络层可以分为三类,输入层,隐藏层和输出层。
如下图示例,一般来说第一层是输入层,最后一层是输出层,而中间的层数都是隐藏层。

image.png

MNIST是Mixed National Institue of Standards and Technology database的简称,中文叫做美国国家标准与技术研究所数据库
此文在上一篇文章《基于tensorflow的MNIST数据集手写数字分类预测》的基础上添加了1个隐藏层,模型准确率从91%提升到98%
《基于tensorflow的MNIST数据集手写数字分类预测》文章链接:https://www.jianshu.com/p/135c21e3db73

0.编程环境

安装tensorflow命令:pip install tensorflow
操作系统:Win10
python版本:3.6
集成开发环境:jupyter notebook
tensorflow版本:1.6

1.致谢声明

1.本文是作者学习《周莫烦tensorflow视频教程》的成果,感激前辈;
视频链接:https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/
2.参考云水木石的文章,链接:https://mp.weixin.qq.com/s/H9I0KX0CBkHeap5Xpwp-5Q

2.下载并解压数据集

MNIST数据集下载链接: https://pan.baidu.com/s/1fPbgMqsEvk2WyM9hy5Em6w 密码: wa9p
下载压缩文件MNIST_data.rar完成后,选择解压到当前文件夹不要选择解压到MNIST_data。
文件夹结构如下图所示:

image.png

3.完整代码

此章给读者能够直接运行的完整代码,使读者有编程结果的感性认识。
如果下面一段代码运行成功,则说明安装tensorflow环境成功。
想要了解代码的具体实现细节,请阅读后面的章节。
在迭代训练5000次后,模型的准确率可以到达98%左右,下面代码为了节省读者运行时间,只迭代训练1000次。

import warnings
warnings.filterwarnings('ignore')
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
batch_size = 100
X_holder = tf.placeholder(tf.float32)
y_holder = tf.placeholder(tf.float32)

def addConnect(inputs, in_size, out_size, activation_function=None):
    Weights = tf.Variable(tf.truncated_normal([in_size, out_size], stddev=0.01))
    biases = tf.Variable(tf.zeros([1, out_size]))
    Wx_plus_b = tf.matmul(inputs, Weights) + biases
    if activation_function is None:
        return Wx_plus_b
    else:
        return activation_function(Wx_plus_b)

connect_1 = addConnect(X_holder, 784, 300, tf.nn.relu)
predict_y = addConnect(connect_1, 300, 10, tf.nn.softmax)
loss = tf.reduce_mean(-tf.reduce_sum(y_holder * tf.log(predict_y), 1))
optimizer = tf.train.AdagradOptimizer(0.3)
train = optimizer.minimize(loss)

session = tf.Session()
init = tf.global_variables_initializer()
session.run(init)

for i in range(1000):
    images, labels = mnist.train.next_batch(batch_size)
    session.run(train, feed_dict={X_holder:images, y_holder:labels})
    if i % 50 == 0:
        correct_prediction = tf.equal(tf.argmax(predict_y, 1), tf.argmax(y_holder, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        accuracy_value = session.run(accuracy, feed_dict={X_holder:mnist.test.images, y_holder:mnist.test.labels})
        print('step:%d accuracy:%.4f' %(i, accuracy_value))

第12行代码tf.truncated_normal方法与tf.random_normal方法的区别如下图所示。
truncated中文叫做被切去顶端的,tf.truncated_normal方法产生的随机数都处于均值两边2个标准差之内。

image.png

上面一段代码的运行结果如下:

Extracting MNIST_data\train-images-idx3-ubyte.gz
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
step:0 accuracy:0.4195
step:50 accuracy:0.8827
step:100 accuracy:0.9144
step:150 accuracy:0.9175
step:200 accuracy:0.9391
step:250 accuracy:0.9422
step:300 accuracy:0.9401
step:350 accuracy:0.9550
step:400 accuracy:0.9581
step:450 accuracy:0.9568
step:500 accuracy:0.9531
step:550 accuracy:0.9618
step:600 accuracy:0.9601
step:650 accuracy:0.9586
step:700 accuracy:0.9599
step:750 accuracy:0.9651
step:800 accuracy:0.9673
step:850 accuracy:0.9691
step:900 accuracy:0.9701
step:950 accuracy:0.9667

从上面的运行结果可以看出,经过1000次迭代训练,模型准确率到达0.9667左右。

4.数据准备

import warnings
warnings.filterwarnings('ignore')
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
batch_size = 100
X_holder = tf.placeholder(tf.float32)
y_holder = tf.placeholder(tf.float32)

第1行代码导入warnings库,第2行代码表示不打印警告信息;
第3行代码导入tensorflow库,取别名tf;
第4行代码人从tensorflow.examples.tutorials.mnist库中导入input_data文件;
本文作者使用anaconda集成开发环境,input_data文件所在路径:C:\ProgramData\Anaconda3\Lib\site-packages\tensorflow\examples\tutorials\mnist,如下图所示:

image.png

第6行代码调用input_data文件的read_data_sets方法,需要2个参数,第1个参数的数据类型是字符串,是读取数据的文件夹名,第2个关键字参数ont_hot数据类型为布尔bool,设置为True,表示预测目标值是否经过One-Hot编码;
第7行代码定义变量batch_size的值为100;
第8、9行代码中placeholder中文叫做占位符,将每次训练的特征矩阵X和预测目标值y赋值给变量X_holder和y_holder。

5.数据观察

本章内容主要是了解变量mnist中的数据内容,并掌握变量mnist中的方法使用。

5.1 查看变量mnist的方法和属性

dir(mnist)[-10:]

上面一段代码的运行结果如下:

['_asdict',
'_fields',
'_make',
'_replace',
'_source',
'count',
'index',
'test',
'train',
'validation']

为了节省篇幅,只打印最后10个方法和属性。
我们会用到的是其中test、train、validation这3个方法。

5.2 对比三个集合

train对应训练集,validation对应验证集,test对应测试集。
查看3个集合中的样本数量,代码如下:

print(mnist.train.num_examples)
print(mnist.validation.num_examples)
print(mnist.test.num_examples)

上面一段代码的运行结果如下:

55000
5000
10000

对比3个集合的方法和属性


image.png

从上面的运行结果可以看出,3个集合的方法和属性基本相同。
我们会用到的是其中images、labels、next_batch这3个属性或方法。

5.3 mnist.train.images观察

查看mnist.train.images的数据类型和矩阵形状。

images = mnist.train.images
type(images), images.shape

上面一段代码的运行结果如下:

(numpy.ndarray, (55000, 784))

从上面的运行结果可以看出,在变量mnist.train中总共有55000个样本,每个样本有784个特征。
原图片形状为28*28,28*28=784,每个图片样本展平后则有784维特征。
选取1个样本,用3种作图方式查看其图片内容,代码如下:

import matplotlib.pyplot as plt

image = mnist.train.images[1].reshape(-1, 28)
plt.subplot(131)
plt.imshow(image)
plt.axis('off')
plt.subplot(132)
plt.imshow(image, cmap='gray')
plt.axis('off')
plt.subplot(133)
plt.imshow(image, cmap='gray_r')
plt.axis('off')
plt.show()

上面一段代码的运行结果如下图所示:

image.png

从上面的运行结果可以看出,调用plt.show方法时,参数cmap指定值为graygray_r符合正常的观看效果。

5.4 查看手写数字图

从训练集mnist.train中选取一部分样本查看图片内容,即调用mnist.train的next_batch方法随机获得一部分样本,代码如下:

import matplotlib.pyplot as plt
import math
import numpy as np

def drawDigit(position, image, title):
    plt.subplot(*position)
    plt.imshow(image.reshape(-1, 28), cmap='gray_r')
    plt.axis('off')
    plt.title(title)
    
def batchDraw(batch_size):
    images,labels = mnist.train.next_batch(batch_size)
    image_number = images.shape[0]
    row_number = math.ceil(image_number ** 0.5)
    column_number = row_number
    plt.figure(figsize=(row_number, column_number))
    for i in range(row_number):
        for j in range(column_number):
            index = i * column_number + j
            if index < image_number:
                position = (row_number, column_number, index+1)
                image = images[index]
                title = 'actual:%d' %(np.argmax(labels[index]))
                drawDigit(position, image, title)

batchDraw(196)
plt.show()

上面一段代码的运行结果如下图所示,本文作者对难以辨认的数字做了红色方框标注:


image.png

6.搭建神经网络

def addConnect(inputs, in_size, out_size, activation_function=None):
    Weights = tf.Variable(tf.random_normal([in_size, out_size], stddev=0.01))
    biases = tf.Variable(tf.zeros([1, out_size]))
    Wx_plus_b = tf.matmul(inputs, Weights) + biases
    if activation_function is None:
        return Wx_plus_b
    else:
        return activation_function(Wx_plus_b)

connect_1 = addConnect(X_holder, 784, 300, tf.nn.relu)
predict_y = addConnect(connect_1, 300, 10, tf.nn.softmax)
loss = tf.reduce_mean(-tf.reduce_sum(y_holder * tf.log(predict_y), 1))
optimizer = tf.train.AdagradOptimizer(0.3)
train = optimizer.minimize(loss)

第1-8行代码定义addConnect函数,即在神经网络中添加1个连接层;
addConnect函数需要4个参数,第1个参数是输入层矩阵Inputs;
第2个参数是连接上一层神经元个数in_size,数据类型为整数;
第3个参数是连接下一层神经元个数,数据类型为整数;
第4个参数是激活函数。数据类型为函数对象。
第10行代码添加第1个连接层,并将其输出结果赋值给变量connect_1;
第11行代码添加第2个连接层,并将其输出结果赋值给变量predict_y,即标签预测值;
第12行代码定义损失函数loss,因为是多分类问题,使用交叉熵作为损失函数,tf.reduce_sum函数的第2个参数为1的原因是表示对行求和, 如果第2个参数为0节表示对列求和。
第13行代码定义优化器optimizer,作者使用过GradientDescentOptimizer、AdamOptimizer,经过实践对比,AdagradOptimizer在此问题的收敛效果较好,读者可以自己尝试设置不同的优化的效果;
第14行代码定义训练过程,即用优化器最小化损失。

7.变量初始化

init = tf.global_variables_initializer()
session = tf.Session()
session.run(init)

对于神经网络模型,重要是其中的W、b这两个参数。
开始神经网络模型训练之前,这两个变量需要初始化。
第1行代码调用tf.global_variables_initializer实例化tensorflow中的Operation对象。


image.png

第2行代码调用tf.Session方法实例化会话对象;
第3行代码调用tf.Session对象的run方法做变量初始化。

8.模型训练

for i in range(1000):
    images, labels = mnist.train.next_batch(batch_size)
    session.run(train, feed_dict={X_holder:images, y_holder:labels})
    if i % 50 == 0:
        correct_prediction = tf.equal(tf.argmax(predict_y, 1), tf.argmax(y_holder, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        accuracy_value = session.run(accuracy, feed_dict={X_holder:mnist.test.images, y_holder:mnist.test.labels})
        print('step:%d accuracy:%.4f' %(i, accuracy_value))

第1行代码表示模型迭代训练1000次;
第2行代码调用mnist.train对象的next_batch方法,选出数量为batch_size的样本;
第3行代码是模型训练,每运行1次此行代码,即模型训练1次;
第4-8行代码是每隔25次训练打印模型准确率。

9.模型测试

import math
import matplotlib.pyplot as plt
import numpy as np

def drawDigit2(position, image, title, isTrue):
    plt.subplot(*position)
    plt.imshow(image.reshape(-1, 28), cmap='gray_r')
    plt.axis('off')
    if not isTrue:
        plt.title(title, color='red')
    else:
        plt.title(title)
        
def batchDraw2(batch_size):
    images,labels = mnist.test.next_batch(batch_size)
    predict_labels = session.run(predict_y, feed_dict={X_holder:images, y_holder:labels})
    image_number = images.shape[0]
    row_number = math.ceil(image_number ** 0.5)
    column_number = row_number
    plt.figure(figsize=(row_number+8, column_number+8))
    for i in range(row_number):
        for j in range(column_number):
            index = i * column_number + j
            if index < image_number:
                position = (row_number, column_number, index+1)
                image = images[index]
                actual = np.argmax(labels[index])
                predict = np.argmax(predict_labels[index])
                isTrue = actual==predict
                title = 'actual:%d\npredict:%d' %(actual,predict)
                drawDigit2(position, image, title, isTrue)

batchDraw2(100)
plt.show()

上面一段代码的运行结果如下图所示:


image.png

从上面的运行结果可以看出,100个数字中只错了3个,符合前1章准确率为97%左右的计算结果。

10.结论

1.这是本文作者写的第5篇关于tensorflow的文章,加深了对tensorflow框架的理解;
2.通过代码实践,本文作者掌握了调整学习率和权重初始化的要点和技巧;

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,542评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,596评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,021评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,682评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,792评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,985评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,107评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,845评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,299评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,612评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,747评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,441评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,072评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,828评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,069评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,545评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,658评论 2 350

推荐阅读更多精彩内容

  • 2018年4月3日 星期二 阴冷下雨 今天外面降温了,挺冷的,下午还下雨了,一直淅淅沥沥的没停过,因为现在还没到雨...
    Bessie330阅读 230评论 0 0
  • 中华鲟来自1.4亿年的恐龙时代,有“水中大熊猫”之称。 一条“爱国”的鱼 从中华的名字就可以看出他很爱国。中华鲟是...
    拾捌學仕阅读 1,163评论 0 1
  • 【五律(新韵)】 春日沙地独步有感 -文/大漠 春来塞外迟,东风似曾识。 露冷沙原阔,霜白草色湿。 边城春料峭,相...
    大漠qxy阅读 139评论 0 1
  • 在一块石头上拌倒了,于是以后躲着石头走,或想尽办法盖住石头,生怕再次想起拌倒时的痛。 可是世界上有千千万万个石头,...
    译霖阅读 196评论 0 0